001     1016743
005     20240711113548.0
024 7 _ |a 10.1016/j.actamat.2023.119256
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03735
|2 datacite_doi
037 _ _ |a FZJ-2023-03735
082 _ _ |a 670
100 1 _ |a Tian, Chunhua
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Segregation-enhanced grain boundary embrittlement of recrystallised tungsten evidenced by site-specific microcantilever fracture
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1696941935_319
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten stands a prime candidate for plasma-facing applications in fusion reactors, attributed to its capacity to withstand high temperatures and intensive particle fluxes. The operational heat flux, however, can induce recrystallisation of the initial microstructure, increasing the brittle-to-ductile transition temperature. Although such a phenomenon is thought to result from impurity segregation to grain boundaries, direct evidence of impurity-induced grain boundary embrittlement has not yet been reported. Addressing this, our study employs microcantilever testing, coupled with local chemical analysis via atom probe tomography, to unveil the impact of impurity segregation on the fracture toughness of recrystallised tungsten with a purity of 99.98 at.%. The in situ fracture toughness measurements were performed with the notch placed directly at random high-angle grain boundaries, revealing brittle failure regardless of grain boundary misorientation or grain orientation. Notably, both single-crystalline microcantilevers and the as-received material exhibited significant plasticity before failure, with instances without crack propagation. In contrast, recrystallised grain boundaries displayed a fracture toughness of 4.7 ± 0.4 MPa·√m, determined using a linear elastic approach - notably lower than for cleavage plane fracture in tungsten microcantilevers. Local atom probe analysis of the high-angle grain boundaries exposed phosphorous segregation exceeding 2 at.% at the recrystallised interfaces, stemming from recrystallisation. Atomistic simulations confirmed the role of phosphorous in embrittling high-angle grain boundaries in tungsten, while additionally revealing mechanisms of crack-grain boundary interactions and their dependence on phosphorous segregation.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ma, Yan
|b 1
700 1 _ |a Ghafarollahi, Alireza
|0 0000-0001-7383-5998
|b 2
700 1 _ |a Patil, Piyush
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dehm, Gerhard
|0 0000-0003-1601-8267
|b 4
700 1 _ |a Bitzek, Erik
|0 0000-0001-7430-3694
|b 5
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 6
700 1 _ |a Best, James P.
|0 0000-0003-4728-2052
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.actamat.2023.119256
|g Vol. 259, p. 119256 -
|0 PERI:(DE-600)2014621-8
|p 119256 -
|t Acta materialia
|v 259
|y 2023
|x 1359-6454
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1016743/files/1-s2.0-S1359645423005864-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1016743/files/pp_rasinski_06_10_23.docx
909 C O |o oai:juser.fz-juelich.de:1016743
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162160
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2022
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21