001     1016757
005     20240226075318.0
024 7 _ |a 10.3390/w15193468
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03743
|2 datacite_doi
024 7 _ |a WOS:001084352100001
|2 WOS
037 _ _ |a FZJ-2023-03743
082 _ _ |a 690
100 1 _ |a Wolters, Tim
|0 P:(DE-Juel1)177674
|b 0
|e Corresponding author
245 _ _ |a Germany-Wide High-Resolution Water Balance Modelling to Characterise Runoff Components as Input Pathways for the Analysis of Nutrient Fluxes
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704812872_18680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The input of nutrients into surface waters and groundwater is directly linked to runoff components. Due to the different physicochemical behaviour of nitrogen and phosphorus compounds, the individual runoff components have different significance as input pathways. Within the scope of the Germany-wide project AGRUM-DE, spatially differentiated runoff components were modelled with the water balance model mGROWA at a resolution of 100 m. The modelled distributed runoff components include total runoff, surface runoff, drainage runoff, natural interflow, direct runoff from urban areas, and groundwater recharge. Although the mGROWA model operates in daily time steps, modelled runoff components can be aggregated to mean long-term hydrologic reference periods—for this study, 1981–2010. We obtained good model agreement through the comparison of measured discharge from 298 river gauges against the spatial means of the modelled runoff components over their corresponding catchment areas. Therefore, the model results provide reliable input for input pathway-specific modelling of actual nutrient inputs as well as scenario analyses expected from the application of nutrient reduction initiatives. This ensures that any differences in the model results stem exclusively from differences in nutrient supply (fertilisation of the soils) and not from climatic effects, such as the influence of wet or dry years.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a McNamara, Ian
|0 P:(DE-Juel1)189091
|b 1
|u fzj
700 1 _ |a Tetzlaff, Björn
|0 P:(DE-Juel1)129578
|b 2
700 1 _ |a Wendland, Frank
|0 P:(DE-Juel1)129554
|b 3
773 _ _ |a 10.3390/w15193468
|g Vol. 15, no. 19, p. 3468 -
|0 PERI:(DE-600)2521238-2
|n 19
|p 3468 -
|t Water
|v 15
|y 2023
|x 2073-4441
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1016757/files/water-15-03468-v2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1016757/files/water-15-03468-v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1016757/files/water-15-03468-v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1016757/files/water-15-03468-v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1016757/files/water-15-03468-v2.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1016757
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)189091
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129554
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-09-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:05:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:05:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:05:06Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER-SUI : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21