001016801 001__ 1016801
001016801 005__ 20240712101017.0
001016801 0247_ $$2doi$$a10.5194/gmd-16-5561-2023
001016801 0247_ $$2ISSN$$a1991-959X
001016801 0247_ $$2ISSN$$a1991-9603
001016801 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03785
001016801 0247_ $$2WOS$$aWOS:001161827800001
001016801 037__ $$aFZJ-2023-03785
001016801 082__ $$a550
001016801 1001_ $$0P:(DE-Juel1)192280$$aEichinger, Roland$$b0$$eCorresponding author
001016801 245__ $$aEmulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
001016801 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2023
001016801 3367_ $$2DRIVER$$aarticle
001016801 3367_ $$2DataCite$$aOutput Types/Journal article
001016801 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704986111_7514
001016801 3367_ $$2BibTeX$$aARTICLE
001016801 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016801 3367_ $$00$$2EndNote$$aJournal Article
001016801 520__ $$aThe columnar approach of gravity wave (GW) parameterisations in weather and climate models has been identified as a potential reason for dynamical biases in middle-atmospheric dynamics. For example, GW momentum flux (GWMF) discrepancies between models and observations at 60∘ S arising through the lack of horizontal orographic GW propagation are suspected to cause deficiencies in representing the Antarctic polar vortex. However, due to the decomposition of the model domains onto different computing tasks for parallelisation, communication between horizontal grid boxes is computationally extremely expensive, making horizontal propagation of GWs unfeasible for global chemistry–climate simulations.To overcome this issue, we present a simplified solution to approximate horizontal GW propagation through redistribution of the GWMF at one single altitude by means of tailor-made redistribution maps. To generate the global redistribution maps averaged for each grid box, we use a parameterisation describing orography as a set of mountain ridges with specified location, orientation and height combined with a ray-tracing model describing lateral propagation of so-generated mountain waves. In the global chemistry–climate model (CCM) EMAC (ECHAM MESSy Atmospheric Chemistry), these maps then allow us to redistribute the GW momentum flux horizontally at one level, obtaining an affordable overhead of computing resources. The results of our simulations show GWMF and drag patterns that are horizontally more spread out than with the purely columnar approach; GWs are now also present above the ocean and regions without mountains. In this paper, we provide a detailed description of how the redistribution maps are computed and how the GWMF redistribution is implemented in the CCM. Moreover, an analysis shows why 15 km is the ideal altitude for the redistribution. First results with the redistributed orographic GWMF provide clear evidence that the redistributed GW drag in the Southern Hemisphere has the potential to modify and improve Antarctic polar vortex dynamics, thereby paving the way for enhanced credibility of CCM simulations and projections of polar stratospheric ozone.
001016801 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001016801 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
001016801 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016801 7001_ $$0P:(DE-Juel1)180866$$aRhode, Sebastian$$b1
001016801 7001_ $$0P:(DE-Juel1)192281$$aGarny, Hella$$b2
001016801 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3$$ufzj
001016801 7001_ $$00000-0002-5034-9169$$aPisoft, Petr$$b4
001016801 7001_ $$00000-0002-3672-6626$$aKuchař, Aleš$$b5
001016801 7001_ $$0P:(DE-Juel1)188765$$aJöckel, Patrick$$b6
001016801 7001_ $$0P:(DE-Juel1)180121$$aKerkweg, Astrid$$b7
001016801 7001_ $$00000-0002-7646-9273$$aKern, Bastian$$b8
001016801 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-16-5561-2023$$gVol. 16, no. 19, p. 5561 - 5583$$n19$$p5561 - 5583$$tGeoscientific model development$$v16$$x1991-959X$$y2023
001016801 8564_ $$uhttps://juser.fz-juelich.de/record/1016801/files/gmd-16-5561-2023.pdf$$yOpenAccess
001016801 909CO $$ooai:juser.fz-juelich.de:1016801$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180866$$aForschungszentrum Jülich$$b1$$kFZJ
001016801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
001016801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180121$$aForschungszentrum Jülich$$b7$$kFZJ
001016801 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001016801 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
001016801 9141_ $$y2023
001016801 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-09-02
001016801 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001016801 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:29:04Z
001016801 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:29:04Z
001016801 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-09-02
001016801 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-02
001016801 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016801 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-02
001016801 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:29:04Z
001016801 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2022$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001016801 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2022$$d2023-10-25
001016801 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
001016801 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
001016801 9801_ $$aFullTexts
001016801 980__ $$ajournal
001016801 980__ $$aVDB
001016801 980__ $$aI:(DE-Juel1)IEK-8-20101013
001016801 980__ $$aI:(DE-Juel1)IEK-7-20101013
001016801 980__ $$aUNRESTRICTED
001016801 981__ $$aI:(DE-Juel1)ICE-3-20101013
001016801 981__ $$aI:(DE-Juel1)ICE-4-20101013
001016801 981__ $$aI:(DE-Juel1)ICE-3-20101013