001016830 001__ 1016830
001016830 005__ 20240712113155.0
001016830 0247_ $$2doi$$a10.1016/j.jpowsour.2023.232771
001016830 0247_ $$2ISSN$$a0378-7753
001016830 0247_ $$2ISSN$$a1873-2755
001016830 0247_ $$2WOS$$aWOS:000931874900001
001016830 037__ $$aFZJ-2023-03814
001016830 082__ $$a620
001016830 1001_ $$00000-0003-0928-9325$$aBernhard, David$$b0
001016830 245__ $$aModel-assisted analysis and prediction of activity degradation in PEM-fuel cell cathodes
001016830 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001016830 3367_ $$2DRIVER$$aarticle
001016830 3367_ $$2DataCite$$aOutput Types/Journal article
001016830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707994753_1296
001016830 3367_ $$2BibTeX$$aARTICLE
001016830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016830 3367_ $$00$$2EndNote$$aJournal Article
001016830 520__ $$aThis work presents a model for the prediction and analysis of voltage losses in proton exchange membrane fuel cells arising from accelerated stress testing. It consists of two submodels. The first submodel uses a statistical physics-based population balance approach to describe the degradation of the catalyst active surface. It is combined with a performance submodel that allows incorporating the degradation of the catalyst activity. During testing, a dedicated diagnostic procedure is used to determine the cell performance and the cathode properties, like the electrochemical active surface area, during the stress tests. It was found that the change of the catalyst activity, described by Tafel slope and exchange current density, correlates with the change in active surface area. The model allows the description of catalyst surface reduction, changes of Tafel slope and exchange current density as well as voltage losses. We find that the voltage losses attributed to the loss of electrochemical active surface area are minor, while the dominant factor is the change of the Tafel-slope. Accordingly, this study shows that during PEM-FC cathode degradation studies the Tafel slope should be the most relevant metric. The model describes the experimental data with a standard deviation of 7.1 mV in a range of 0–2.0 A/cm. The model is intended to be used as a building block for the prediction of performance losses of PEM fuel cells under drive cycle conditions.
001016830 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001016830 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016830 7001_ $$0P:(DE-Juel1)178966$$aKadyk, Thomas$$b1$$eCorresponding author$$ufzj
001016830 7001_ $$0P:(DE-HGF)0$$aKirsch, Sebastian$$b2$$eCorresponding author
001016830 7001_ $$0P:(DE-HGF)0$$aScholz, Hannes$$b3
001016830 7001_ $$0P:(DE-HGF)0$$aKrewer, Ulrike$$b4
001016830 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2023.232771$$gVol. 562, p. 232771 -$$p232771$$tJournal of power sources$$v562$$x0378-7753$$y2023
001016830 8564_ $$uhttps://juser.fz-juelich.de/record/1016830/files/Bernhard23_activity%20degradation_JPS.pdf$$yRestricted
001016830 909CO $$ooai:juser.fz-juelich.de:1016830$$pVDB
001016830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b1$$kFZJ
001016830 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001016830 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001016830 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001016830 9141_ $$y2023
001016830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
001016830 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2023-08-28
001016830 920__ $$lyes
001016830 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001016830 980__ $$ajournal
001016830 980__ $$aVDB
001016830 980__ $$aI:(DE-Juel1)IEK-13-20190226
001016830 980__ $$aUNRESTRICTED
001016830 981__ $$aI:(DE-Juel1)IET-3-20190226