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Abstract

The development, fabrication, and operation of electro-
chemical energy devices like fuel cells, batteries, or electro-
lyzers require powerful diagnostic techniques. Frequency
response analysis methods deconvolute and quantify reaction
and transport processes based on their dynamics, extract
properties such as conductivity, diffusivity, permeability, and
electrocatalytic activity, and assess the state-of-health, state-
of-charge of a battery, mass activity of an electrocatalytic layer,
or the presence of faults. Taking nonlinear information into
account improves process identifiability, while using different
input or output signals increases the sensitivity towards spe-
cific processes. Sensitivity analyses and design of experiments
techniques are valuable tools to evaluate different frequency
response techniques and help building optimized test
protocols.
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Introduction

Electrochemical energy devices like fuel cells, batteries,
and electrolyzers play a key role in the transition towards
a sustainable and climate-friendly energy system. The
success of these devices hinges on the development,
production, integration, and optimal operation of
advanced materials, components, cells, and systems.
Powerful diagnostic techniques are required throughout
the development, fabrication, and operation stages.

In development, diagnostic characterization tools
quantify properties such as conductivity, diffusivity,
permeability, and electrocatalytic activity, as well as
rates of reaction, transport, and degradation processes of
relevant materials and interfaces. This helps to identify
bottlenecks and limitations and optimize the trade-off
between performance and lifetime at the device level.

In the fabrication process, diagnostic techniques ensure
quality control, especially in postproduction factory
acceptance testing. In fabrication, diagnostic techniques
are subject to different requirements than those at the
development stage. For example, in the automotive fuel
cell sector, so-called 10 Hz manufacturing is envisaged,
i.e., producing 10 cells per second, in order to fully
transform the industry towards a hydrogen economy.
"This production speed requires diagnostic techniques to
be fast while still maintaining reliability and suffi-
cient accuracy.

During operation, diagnostic methods and tools
are essential to assessing the state of the device. The
state encompasses state variables like voltage, current,
temperature, or concentration that are used by control
systems to operate the device. Furthermore, the state-
of-health, the state-of-charge of a battery, the mass ac-
tivity of an electrocatalytic layer, or the presence of
faults can be evaluated, which are essential pieces of
information for the management of the device.

For these diagnostic purposes, frequency response
analysis (FRA) methods form a powerful class of

www.sciencedirect.com

Current Opinion in Electrochemistry 2023, 42:101378


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:t.kadyk@fz-juelich.de
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.coelec.2023.101378
https://doi.org/10.1016/j.coelec.2023.101378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coelec.2023.101378&domain=pdf
www.sciencedirect.com/science/journal/24519103
www.sciencedirect.com/science/journal/24519103

2 Innovative Methods in Electrochemistry (2023)

techniques. In FRA, the system under investigation is
perturbed harmonically, i.e., an input signal of a single
frequency is applied, and the response in an output
signal (or multiple signals) is analyzed. Scanning
through a range of input frequencies successively
perturbs processes with different time constants, which
allows us to deconvolute and quantify them.

The frequency response principle allows the application
of different analysis techniques that we want to discuss
in this perspective article. Linear response methods like
electrochemical impedance spectroscopy (EIS) allow for
a simplified mathematical treatment in the analysis and
are valid as long as the input amplitude is sufficiently
small. If larger input amplitudes are used, the output
signal contains distortions in the form of higher har-
monics, which are caused by the nonlinearities of the
analyzed system. While taking the nonlinearities into
account complicates the analysis, it can enable the
deconvolution of processes with similar time
constants that cannot be distinguished in the
linear approximation.

For FRA, electrical perturbation signals, i.e., current and
voltage are often used. They are easily accessible (even
in situ or in operando) and have high accuracy in both
application and measurement. However, it is possible to
use other input or output signals, like pressure, con-
centration, humidity, or temperature. This opens up
avenues for developing new diagnostic methods, espe-
cially when modeling is combined with expertise in
experiments and instrumentation.

Electrochemical impedance spectroscopy
and the distribution of relaxation times
Electrochemical impedance spectroscopy is a mature
linear FRA method [1,2], in which a small-amplitude
input signal (current or voltage) results in a linear, har-
monic output signal. Exploiting this linearity simplifies
modeling and analysis [3]. EIS allows for easy parameter
extraction through direct fitting or graphical methods
[4], as well as deconvolution and quantification of pro-
cesses and even electrode structures [5,6]. There are
seized analysis methods for interpreting measured EIS
spectra: equivalent circuit models are descriptive and
intuitive, but unreliable without an underlying physical
understanding. Physical models offer direct interpreta-
tion of the results, often with analytical solutions that
simplify computation [4,6].

An emerging technique for EIS spectra analysis is the
distribution of relaxation times (DRT), which enables
the analysis and deconvolution of physical processes
without a priori knowledge or assumptions [7—9].
However, the conversion of EIS spectra into the DRT is
a mathematically ill-posed problem that requires
developing new theoretical [10] or data-driven [11]

methods. Equipped with these tools, DRT is already
widely used in the analysis of solid oxide cells [12,7] and
recently for the more complex analysis of oxygen
transport in low-Pt-loading polymer electrolyte fuel
cells (PEFC) [13], as well as stack-level analyses [14].

Nonlinear frequency response

When the amplitude of the input signal is increased
beyond the linear range, the output signal contains
nonlinear distortions in the form of higher harmonics,
i.e., frequency components that are multiples of the
input frequency. These higher harmonics contain in-
formation about the nonlinearities of the system that
can be used to identify processes that are “masked” in
the linear EIS spectra, e.g., processes that have similar
time constants [15,16]. Examples of such processes
include losses due to water management problems and
carbon monoxide poisoning in PEFC, which result in
similar features of EIS spectra but leave unique “fin-
gerprints” in the higher harmonics [17]. For lithium ion
batteries, it has been found that while EIS is not suffi-
cient to diagnose the safety-critical aging process of
lithium plating, nonlinear frequency response analysis
(NFRA) and especially the third harmonic are very
sensitive to plated lithium [18].

For analyzing experimental data, a simple way is to
evaluate the total harmonic distortion (THD), i.e., the
sum of all higher harmonics, as developed for direct
methanol fuel cells [19,20] and the oxygen reduction
reaction (ORR) in PEFC [21]. Recently, a similar
technique has been used to fundamentally analyze the
capabilities of NFRA for the analysis of electrochemical
cells [22]. A more complex analysis theory based on
Volterra series expansion uses the Volterra kernels or
higher-order frequency response functions (HFRF) as
input signal-independent descriptors of the nonlinear
dynamic behavior of the cell [23,17,24]. A similar but
more straightforward approach to directly analyzing
higher harmonics in the output signal was recently
applied to lithium ion batteries [25—28], which gave
valuable insights for process identification [29,30] and
state-of-health diagnostics [30—32].

Input/output signals

Another way of advancing frequency response di-
agnostics towards higher accuracy and the ability to
deconvolute ambiguous contributions is through the use
of alternative, nonelectric input or output signals.
Recently, frequency response methodologies based on
nonelectrical quantities have been reviewed [33]. The
first nonelectrical perturbation used for PEFC fre-
quency response diagnostics has been the cathode back
pressure [34]. This so-called electrochemical pressure
impedance spectroscopy (EPIS) is especially sensitive
to diagnosing the liquid water accumulation in the
cathode catalyst and gas diffusion layer. Model-based
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analyses [35,36] and experimental works [37] followed
and helped furnish the suitability of the method. A
recent current opinion paper summarizes and discusses
the state-of-the-art in EPIS [38], while a model-based
analysis remarks critically that measured EPIS spectra
might not be unique [39]. Another problem with EPIS is
the effect of the humidifier volume on the applied
pressure perturbation, which makes measured spectra
dependent on the fuel cell system setup.

A further complication of EPIS is that a perturbation of
the pressure also perturbs the partial pressures of
oxygen and water vapor. This weakness was circum-
vented by keeping the overall pressure constant but
perturbing the oxygen partial pressure or concentration
[40,41]. This so-called concentration frequency
response analysis (cFRA) does not mechanically perturb
the pressure-dependent liquid water distribution, thus
leading to a high sensitivity towards oxygen transport.
One way of achieving concentration perturbation is by
switching between dry and humidified oxygen, thus
simultaneously perturbing both oxygen and water vapor
concentrations. In combined modeling and experi-
mental work, it has been shown that this simultaneous
perturbation can be used to decouple the oxygen and
water transport dynamics [42]. Easy parameter extrac-
tion was enabled by deriving analytical solutions for
cFRA spectra [36,43].

Apart from perturbing different input signals, it is also
possible to measure and analyze different output signals.
Direct electrochemical mass spectrometry (DEMS) has
been used to measure the reaction product concentra-
tion during an EIS experiment [44]. This so-called
species frequency response analysis (sFRA) was
demonstrated in a combination of experimental and
modeling work on electrochemical methanol oxidation.
It was found that sFRA can decouple the interplay of
mass  transport and  electrochemical  reaction
kinetics and is sensitive to transport parameters that are
not accessible by EIS. A similar method, termed con-
centration admittance spectroscopy (CAS), was recently
suggested, in which the measurement of the oxygen
concentration at the outlet of a PEFC during an EIS
measurement can be used to extract oxygen transport
parameters more accurately [45].

Sensitivity analysis

As diagnostic models become increasingly complex, the
problem of parameter identification becomes increas-
ingly significant. The process of parameter identifica-
tion encompasses three aspects: Firstly, how accurate are
the determined parameter values, i.e., how large are the
parameter uncertainties? Secondly, how strongly does
the model prediction depend on the parameter values,
i.e., how large are the parameter sensitivities? Thirdly,
how strongly are parameters correlated, or stated
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differently, how independent and thus identifiable are
they? Despite the central and increasingly important
role of parameter identification, this topic is still not
sufficiently considered in the fuel cell community, and
the literature on the topic is sparse. However, recently,
parameter identifiability and sensitivity analyses, as well
as design of experiment methods, were introduced for
model parameterization [46,47], cell performance opti-
mization [48], modeling, and diagnostics [33].

In order to find the best FRA method or combination
of methods, or to explore the potential of new
methods model-based analyses of controllability,
observability, and sensitivity are suitable tools. A
framework based on linear system theory was devel-
oped, which is suitable to compare different input
and output signal combinations [33]. In this way, the
strengths and weaknesses of different methods can
be evaluated before investing in experimental
instrumentation. In order to evaluate the strength of
a given method, relative sensitivities were introduced
as a measure and used for the evaluation of EPIS
[35], while others analyzed sFRA [44] and CAS [45].
By analyzing the relative sensitivity as a function of
the input frequency, the optimal frequency band to
extract a certain parameter can be determined. This
helps optimize the measured frequency range and
can be used to combine different methods. Further,
design of experiment methods can be used to opti-
mize the distribution of the input frequency to
achieve desired diagnostic tools, e.g., maximize
accuracy for a given measurement time or to mini-
mize measurement time while maintaining a desired
accuracy [49].

Overall, frequency response analysis methods are a
versatile class of diagnostic tools for energy devices.
Enhancing the renown electrochemical impedance
spectroscopy into the nonlinear regime, as well as taking
into account different input and output signals, allows to
tailor the diagnostic capabilities towards the specific
requirements during the development, fabrication,
implementation, and operation of energy devices.
Optimizing the sensitivity of different methods and
their combinations allows for the building of advanced
tools and test protocols.
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