001016833 001__ 1016833
001016833 005__ 20240712113144.0
001016833 0247_ $$2doi$$a10.1016/j.electacta.2023.142228
001016833 0247_ $$2ISSN$$a0013-4686
001016833 0247_ $$2ISSN$$a1873-3859
001016833 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03817
001016833 0247_ $$2WOS$$aWOS:000972486700001
001016833 037__ $$aFZJ-2023-03817
001016833 082__ $$a540
001016833 1001_ $$0P:(DE-Juel1)180638$$aZhang, Yufan$$b0
001016833 245__ $$aModeling water phenomena in the cathode side of polymer electrolyte fuel cells
001016833 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001016833 3367_ $$2DRIVER$$aarticle
001016833 3367_ $$2DataCite$$aOutput Types/Journal article
001016833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707995286_795
001016833 3367_ $$2BibTeX$$aARTICLE
001016833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016833 3367_ $$00$$2EndNote$$aJournal Article
001016833 520__ $$aWater exerts a crucial influence on the performance of a polymer electrolyte fuel cell as both “catalyst activating agent” and “oxygen blocker”. Therefore, fine-tuningthe water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathodecatalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid watersaturation is both a composition variable determining the effective properties and a variable that depends on the solution of the transport equations that use theeffective properties. The model reveals the formation of a thin water layer in the diffusion medium adjacent to the catalyst layer at high current density. Thisinterfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in the catalyst layer, which causes a drastic increase in the voltageloss at high current density that drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, andpropose mitigation strategies. The fundamental understanding gained will aid the development of membrane electrode assemblies with tailored pore networkproperties to achieve vital improvements in performance.
001016833 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001016833 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016833 7001_ $$0P:(DE-HGF)0$$aAgravante, Gerard$$b1
001016833 7001_ $$0P:(DE-Juel1)178966$$aKadyk, Thomas$$b2$$ufzj
001016833 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b3$$eCorresponding author
001016833 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2023.142228$$gVol. 452, p. 142228 -$$p142228$$tElectrochimica acta$$v452$$x0013-4686$$y2023
001016833 8564_ $$uhttps://juser.fz-juelich.de/record/1016833/files/YufanZhang23_EA_CCL_Water_transport-1.pdf$$yRestricted
001016833 8564_ $$uhttps://juser.fz-juelich.de/record/1016833/files/Zhang_Modeling%20water.pdf$$yOpenAccess
001016833 909CO $$ooai:juser.fz-juelich.de:1016833$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180638$$aForschungszentrum Jülich$$b0$$kFZJ
001016833 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180638$$aRWTH Aachen$$b0$$kRWTH
001016833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b2$$kFZJ
001016833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
001016833 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178034$$aRWTH Aachen$$b3$$kRWTH
001016833 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001016833 9141_ $$y2023
001016833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016833 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-24$$wger
001016833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2022$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001016833 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2022$$d2023-08-24
001016833 920__ $$lyes
001016833 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001016833 9801_ $$aFullTexts
001016833 980__ $$ajournal
001016833 980__ $$aVDB
001016833 980__ $$aI:(DE-Juel1)IEK-13-20190226
001016833 980__ $$aUNRESTRICTED
001016833 981__ $$aI:(DE-Juel1)IET-3-20190226