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Abstract

The consideration of uncertainties is of particular importance for nuclear reac-

tor safety, where high safety standards for example ensure the integrity of the

containment. By means of Computational Fluid Dynamics (CFD), buoyancy-

induced mixing processes, which can take place during a severe reactor accident,

are investigated. However, the CFD models contain uncertainties, which have a

large impact on the present flow and have to be analyzed. The method develop-

ment for the subsequent Uncertainty Quantification of a representative reactor

test containment is conducted using the Differentially Heated Cavity of aspect

ratio 4 with Ra = 2× 109 as a generic test case from the literature. In this way,

methods for the future quantification of uncertainties in large-scale industrial

applications are established. Results from single-fidelity models such as Un-

steady Reynolds-Averaged Navier-Stokes, Large Eddy Simulation and Direct

Numerical Simulation are presented and combined to three-level multifidelity

models. Stochastic representations of scalar random responses are constructed

by means of Polynomial Chaos Expansions and Karhunen-Loève Expansions are

derived for the representation of stochastic processes. A new approach for the

description of highly dynamic transient processes called Random Field Composi-
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tion (RFC) is presented, which proposes stochastic model construction through

combination of multiple random fields. The presented multifidelity (MF) mod-

els achieve high accuracy in combination with a justifiable computational effort.

Therefore, MF modeling serves as a promising approach for large-scale applica-

tions. Furthermore, it is found, that RFC allows for the description of highly

dynamic processes with a reasonable number of simulation runs, if the complex-

ity of the stochastic process representation can be reduced by partitioning the

stochasticity into single random fields.

Keywords: Uncertainty Quantification, Buoyancy-driven transient mixing

process, Polynomial Chaos Expansion and Karhunen-Loève Expansion,

Random Field Composition, Error estimation, Variance-based decomposition

1. Introduction

Computational models enable predictions in the design process of technical

components in mechanical or plant engineering and allow for the adaptation to

subsequent application requirements. However, predictions based on numerical

models are subject to uncertainties, due to unknown or imprecise input param-5

eters, mathematical models or approximations and numerical methods. In some

applications, these uncertainties can have a large impact on the results, which

the model is supposed to predict. The high complexity of computational models

in the field of nuclear reactor safety leads to considerable uncertainties, which

might have significant influence on the results. One example is the prediction of10

flow phenomena by means of CFD. Since the prevention of the release of radioac-

tive substances has to be ensured, numerical simulations are conducted for the

prediction of hydrogen distribution and pressure build-up in a nuclear reactor

containment during an accident scenario [1, 2]. The formation, stability, as well

as the remobilization of a locally flammable gas layer have been studied with15

CFD and experiments. However, CFD analysis for the reproduction of natural

convection experiments like MISTRA NATHCO [3] (CEA, France) and THAI-

TH22 [4] (Becker Technologies, Germany) have shown that the specified initial
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and boundary conditions [5] (e.g., initial gas and wall temperatures) have a ma-

jor influence on the results. In addition, the specification of initial and boundary20

conditions within the CFD simulation is subject to uncertainty, which is due

to missing input variables or measurement inaccuracies [6, 7]. Consequently,

results are also subject to uncertainties, which have to be taken into account.

For their evaluation though, insufficient experience exists [8, 9]. Therefore, the

present work presents promising methodologies for the Uncertainty Quantifica-25

tion (UQ) of buoyancy-driven flows and mixing processes. As preparation for

the later UQ analysis of the THAI-TH32 experiment [10], the method devel-

opment is first conducted using a generic test case from the literature, which

reflects similar physics as those expected inside the reactor test containment of

the THAI test series. The initial application to a simplified configuration allows30

for testing of existing methods and their further development at a reasonable

computational cost. As a test case, the Differentially Heated Cavity (DHC) with

aspect ratio 4 [11, 12, 13] was chosen and extended to a superimposed mixing

process. It is a tall cavity with hot left wall and cold right wall, in which natural

convection flow and buoyancy-induced mixing processes occur in the presence35

of two gas mixtures with different densities.

In the following, a brief summary of related UQ studies, which are reported

in the literature, is provided. Single-phase mixing within a flow channel was

investigated in [14, 15, 16, 17, 18]. Two parallel streams with different densi-

ties, which are initially separated by a splitter plate, are mixed under turbulent40

conditions. These studies analyzed discrete random field data by means of Poly-

nomial Chaos Expansions (PCE) and results were compared with experimental

data. Thermo-fluid flow within the DHC was studied by Le Mâıtre et al. in the

Boussinesq [19] and non-Boussinesq limits [20] through solving the low-Mach-

number equations. Uncertainties in the mean velocity field, which originate45

from the uncertain cold wall temperature, were investigated in a discrete man-

ner using PCE. Impact of uncertainty in heated bottom wall temperature for

Rayleigh–Bénard convection (RBC) was considered using PCE in [21]. Fur-

ther advanced UQ methodologies were applied to different areas in the field of
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CFD. Uncertainty quantification of the performance of a sailing yacht hull was50

conducted using multifidelity kriging or gaussian process modeling by de Baar

et al. [22]. Later, the methodology was extended to an adaptive multifidelity

Kriging approach, which was applied to CFD of an axial compressor rotor test

case [23]. Palar et al. enhanced multifidelity Kriging through the utilization

of PCE and evaluated the method using different test problems [24]. Uncer-55

tainties in the CFD simulation of turbine blade leading edge film cooling were

assessed by Mohammadi-Ahmar et al. [25] using bi-fidelity models, which were

determined from PCEs based on the Orthogonal Matching Pursuit (OMP) and

the Kriging method. Multifidelity PCEs were also successfully applied to UQ

of film cooling flow under random operational and geometrical conditions by60

Mohammadi-Ahmar et al. [26]. Furthermore, Uncertainty Quantification also

established in aerospace engineering for the assessment of predictions in the

field of CFD. Huan et al. [27] studied uncertain spatially dependent fields using

Karhunen-Loève Expansions (KLE), which allows for the continuous description

of random fields, for further development of scramjet engines along with efficient65

and stable propulsion under hypersonic flight conditions. A turbulent round jet

was analyzed in a similar fashion by Jivani et al. [28] using KLE in conjunction

with PCE. The approach was extended to multifidelity modeling in order to

create stochastic models of high accuracy with justifiable computational cost.

The present research transfers promising methods to the field of nuclear70

reactor safety and continues the work of Wenig et al. [29] in the field of uncer-

tainty quantification for buoyancy-induced turbulent mixing processes between

two miscible fluids within the DHC. The results comprise the presentation of

scalar integral quantities and time-dependent stochastic processes, which are

approximated through Polynomial Chaos Expansions and Karhunen-Loève Ex-75

pansions. Single-fidelity CFD models, such as Unsteady Reynolds-Averaged

Navier-Stokes (URANS), Large Eddy Simulation (LES) and Direct Numerical

Simulation (DNS) , are considered and combined to multifidelity models. In

addition, a new approach to describe stochastic processes is presented, which

proposes the coupled representation of stochastic processes through function80
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composition of single random fields, referred to as Random Field Composition.

When using this method, highly dynamic transient processes are represented

through partitioning stochasticity into single less complex random fields. Fur-

thermore, single-fidelity and multifidelity results are compared with stochastic

models from DNS, variance fractions are attributed to uncertain input variables85

by determination of total-order Sobol indices and error estimates are calculated,

which indicate potential model improvement and localize possible model defi-

ciency. Through the evaluations, the developed techniques are proven an appro-

priate methodology for the future uncertainty quantification of the THAI-TH32

experiment.90

The paper is structured as follows. Section 2 covers the methods, which

were used for the prediction and stochastic representation of the underlying

flow phenomena. Afterwards the obtained results are presented and discussed

in Section 3. A summary of the work and of important findings is provided in

Section 4.95

2. Methods

In Section 2.1, mathematical models and numerical techniques to predict

the underlying fluid flow are presented. Details about the applied stochastic

spectral methods for the UQ analysis are provided in Section 2.2.

2.1. Computational Fluid Dynamics100

The governing equations are introduced in Section 2.1.1. This is followed by

the description of the case setup in Section 2.1.2 and the numerical framework

along with the discretization in Section 2.1.3.

2.1.1. Governing Equations

For the subsequent CFD analysis, low Mach number flow of two Newtonian

viscous fluids is considered. The modelled governing equations for continuity,
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momentum, energy, and species transport take the form (for simplicity the av-

eraging or filtering operations are omitted)

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρuu) = −∇p+ ρg +∇ · (2µeff τ (u))−∇ ·

(
2

3
µeff (∇ · u)

)
,

∂ρh

∂t
+
∂ρK

∂t
+∇ · (ρuh) +∇ · (ρuK)− ∂p

∂t
= ∇ · (ραeff (∇h)) + ρu · g + SD,

∂ρYi
∂t

+∇ · (ρuYi) = ∇ · (ρDeff (∇Yi)) , (1)

where u is the velocity field, ρ is the density field, p is the static pressure

field, g = (0, g, 0) is the gravitational acceleration vector, h is the enthalpy,

K = 1
2 |u|

2
is the kinetic energy of the system, Yi is the mass fraction of the

ith species from the set of gas species indices given by N = {1, 2}, and the rate

of strain tensor is defined as τ (u) = 1
2

(
∇ · u + (∇ · u)

T
)

. SD accounts for the

enthalpy transport due to diffusive mass transport and the associated correction

of the heat conduction:

SD =
∑
i∈N
∇ · (ρ (Deff − αeff ) cp,i T (∇Yi)) . (2)

The effective dynamic viscosity µeff is the sum of the molecular and tur-105

bulent or subgrid-scale viscosity regarding URANS and LES, respectively. h

is the sum of the internal energy per unit mass e and the kinematic pressure

h = e+ p
ρ . According to the gradient flux approach, the thermal diffusivity re-

sults from αeff = µ
ρ·Pr +

νt/sgs
Prt

with the turbulent Prandtl number Prt = 0.85.

The effective molecular diffusivity results from Deff = D+
νt/sgs
Sct

with the tur-110

bulent Schmidt number Sct = 0.85. The molecular diffusivity D is assumed to

be constant. In the case of DNS the effective quantities reduce to their molecular

counterpart. Mixture properties Φm are computed from the individual species

properties Φi and species mass fractions Yi : Φm =
∑

i∈N YiΦi.

2.1.2. Case Definition115

The investigations are conducted using the DHC with aspect ratio 4, which is

filled with air and 40 vol% of helium in the upper third, as shown in a schematic
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sketch in Figure 1. Two different configurations of the DHC are considered. The

reference case in Figure 1a is used for the calculation of result quantities, which

are determined according to Equation 34 in Section 3.2. The reference case is de-120

fined with uniform temperature specification at the left and right wall, adiabatic

walls at the top and bottom and with a helium layer, which is uniformly dis-

tributed in the upper third. The parameter variation case in Figure 1b serves for

the actual study of uncertainties. For this configuration uncertain parameters

are considered and will be further discussed in this section. The extensions of125

the computational domain are height H, width W , and depth D. The height-to-

width aspect ratio and the width-to-depth aspect ratio are ϕHW = H/W = 4

and ϕWD = W/D = 1, respectively. The Prandtl numbers Pr = 0.71 and

Pr = 0.66 used correspond to air and helium, respectively. The material val-

ues of air are used to define the Rayleigh number Ra = gβ∆TH3ρ
µα = 2× 109.130

The non-slip boundary condition is imposed on the velocity at the four enclos-

ing walls. The cavity is subject to a temperature difference ∆T = T l − T r.

Thermal radiation is neglected. In case of URANS, 2D simulations are consid-

ered, while for DNS and LES, the third spatial dimension is taken into account

due to the three-dimensional character of turbulent flow. Hence, the flow field135

is assumed to be periodic in the z-direction for LES and DNS. For the mass

fraction, a zero-gradient at the enclosing walls is defined: (∇Y · n)|∂Ω = 0,

where n denotes the wall-normal unit vector. For LES, a zero gradient is de-

fined for the sub-grid scale viscosity and thermal diffusivity: (∇νsgs · n)|∂Ω = 0,

(∇αsgs · n)|∂Ω = 0. The Wall-Adapting Local Eddy-viscosity (WALE) model140

with Cw = 0.5 is applied to modelling viscous subgrid-scale effects [30]. For

URANS, continuous wall functions are used for the eddy frequency, turbulent

viscosity and thermal diffusivity, while a zero gradient boundary condition is

defined for the turbulent kinetic energy. The wall treatment runs in low-Re for-

mulation with y+ < 4. The k-omega Shear Stress Transport (SST) turbulence145

model [31] is used with included buoyancy terms, based on the simple gradient

diffusion hypothesis [32]. As initial conditions, temperature T0 = T = 298.15 K

and pressure p0 = 1 bar are applied. The material values for air and helium
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Figure 1: Schematic sketch of the Differentially Heated Cavity with illustration of

uncertain parameters, such as the wall temperature difference, the wall-tangential

temperature gradient, the top and bottom wall temperature and the initial helium

stratification.

at T = 298.15 K and p = 1 bar listed in Table 1 are applied. From this, the

molecular diffusion coefficient, which was assumed to be constant, was also de-150

rived using Fuller’s method [33] with D0 = 6.904× 10−5 m2/s. The remaining

properties are derived by the ideal gas law at T = 298.15 K.

Table 1: Applied material properties of air and helium.

Gas Mole Weight M Isobaric Heat Capacity Cp Dynamic Viscosity µ Prandtl Number Pr

air [33] 28.96 g mol−1 1006.5 J K−1 1.845× 10−5 Pa s 0.707

helium [34] 4.0 g mol−1 5193 J K−1 1.985× 10−5 Pa s 0.664

To investigate the propagation of uncertainties in the initial and boundary

conditions as well as in material properties, input uncertainties were imposed

through the definition of mutually independent random input variables. The

uncertainties were chosen to be representative of possible uncertainties in the
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THAI-TH32 experiment [10]. An illustration of the uncertain parameters is

provided in Figure 1b. The uncertainties in the thermal boundary conditions

include the wall temperature difference between the left and right walls, the

vertical wall-tangential temperature gradient at the left and right walls, and

the temperatures at the top and bottom walls of the cavity. Uncertainty in

the initial helium stratification is modeled by a varying linear profile for the

mole fraction X. The molecular diffusion coefficient D is also considered as an

uncertain parameter. The wall temperature difference between left and right

wall is defined by

T l/r = T ± ∆T

2
, ∆T = (∆T )rel ∆T0 , (3)

where ∆T0 = 21.431 K is the reference temperature difference to obtain

Ra = 2× 109, (∆T )rel describes the relative proportion of the reference tem-

perature difference, and ∆T describes the actual temperature difference under

consideration. The average temperature of the boundary is kept constant. The

wall-tangential temperature gradient is defined with ψ = y − H/2 by the ex-

pression

T |l/r (ψ) =
(
Ty|l,r

)
rel

∆T

H
ψ + T l/r , (4)

where
(
Ty|l,r

)
rel

indicates the relative proportion of the temperature change

due to the temperature gradient over the entire height to the characteristic

temperature difference ∆T . The bottom and top wall temperature is specified

by the expression

Tb/t = T r/l ±
(
T |b,t

)
rel

∆T , (5)

where
(
T |b,t

)
rel

is the relative proportion of the characteristic temperature

difference ∆T . To maintain consistency in the temperature field, a parabolic

profile towards the corners and edges is applied, see [29]. The initial helium

stratification is changed by variation of the initial mole fraction difference with

υ = y − 2H/3 by

X (υ) = (∆X)rel
2X0

H − h
υ +X0 (1− (∆X)rel) , (6)
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where (∆X)rel is the relative proportion of the constant mole fraction X0 = 0.40

of the reference case. The molecular diffusion coefficient results from

D = (D)rel D0 , (7)

where (D)rel is the relative proportion of the reference molecular diffusivity

D0 = 6.904× 10−5 m2/s. Finally, model distributions IQ for the uncertain

input variables Qi with corresponding realizations qi were defined and are listed155

in Table 2. N
(
µ, σ2

)
and LN

(
µ, σ2

)
denote a normal distribution and a log-

normal distribution with actual expectation µ and variance σ2. T N
(
µ, σ2, a, b

)
denotes a truncated normal distribution with a and b as the lower and upper

bounds. Further information regarding the definition of uncertain parameters

can be found in [29].160

Table 2: Definition of mutually independent random input variables

qi Qi ∼ IQ qi Qi ∼ IQ
(∆T )rel (∆T )rel ∼ N

(
1, 0.12

)
(Ty|l,r)rel (Ty|l,r)rel ∼ LN

(
0.1, 0.12

)
(T |b,t)rel (T |b,t)rel ∼ LN

(
0.2, 0.12

)
(∆X)rel (∆X )rel ∼ T N

(
0, 0.22, 0, 1

)
(D)rel (D)rel ∼ N

(
1, 0.12

)
2.1.3. Framework and Discretization

The open-source C++ toolbox OpenFOAM v.2006 [35, 36] was utilized for

solving the nonlinear set of governing equations in a finite-volume framework.

The pressure–velocity coupling was addressed by using the PIMPLE algorithm.

It is ensured that the normalized residuals of the pressure-velocity coupling fall165

below the value 10−4, while for the matrix solvers below 10−6. The convective

momentum flux was evaluated by second-order linear upwind. The remain-

ing convective fluxes and diffusive fluxes were evaluated by the limited linear

scheme. The convective flux of the helium mass fraction was discretized by the

limited linear scheme that is bounded between 0 and 1. Temporal advancement170

was achieved by blending of 10% Euler and 90% Crank–Nicolson scheme, which

is a good compromise between accuracy and robustness. It has been ensured
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that the CFL number is always below the value of 0.5. The spatial grid resolu-

tion has to be fine enough to resolve most of the turbulent fluctuations for LES

and fully resolve turbulence for DNS. In [29] the applied mesh refinement strat-175

egy is explained in detail and hence not repeated here. To ensure appropriate

resolution of the wall-boundary layer, the dimensionless horizontal and vertical

wall normal positions of the wall adjacent cell centroids are defined at x+
⊥ ≤ 1

and y+
⊥ ≤ 1. The mesh is refined linearly starting from the central planes of

the cavity in the direction of the walls with a constant factor. The maximum180

dimensionless wall tangential cell sizes are set with ∆x+
‖ ≈ 30 and ∆y+

‖ ≈ 30

for LES and with ∆x+
‖ ≈ 10 and ∆y+

‖ ≈ 10 for DNS. A sufficient length in

the periodic direction ϕWD = W/D = 1 is applied to ensure that turbulence

fluctuations are uncorrelated at a separation of one half-period [11]. The mesh

in the periodic direction is uniformly distributed with ∆z+ ≈ 20 for LES and185

DNS. A detailed description of the underlying mesh with supplementary grid

convergence study can be found in [29].

2.2. Uncertainty Quantification

The construction of Polynomial Chaos Expansions is described in Section

2.2.1, the stochastic representation via Karhunen-Loève Expansions is reported190

in Section 2.2.2, Section 2.2.3 presents the multifidelity modeling approach and

the introduced Random Field Composition is explained in Section 2.2.4. Prin-

ciples for variance-based decomposition and error estimation are provided in

Section 2.2.5 and Section 2.2.6, respectively.

2.2.1. Polynomial Chaos Expansions195

Non-intrusive Polynomial Chaos Expansions (PCE) [37, 38] were applied

because of the high convergence rate of the stochastic results with an increas-

ing number of simulation runs. Therefore, accurate results can potentially be

obtained even with a moderate number of calculations. The random input vari-

ables Q : Ω → Υ ⊂ Rn are functions that map events ω ∈ Ω from the sample

space Ω to realizations q ∈ Υ. PCE is a spectral method in which random
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response functions R (ω) = R (Q) are described by suitable multidimensional

orthogonal polynomials Ψj (Q) with corresponding expansion coefficients αp.

The truncated polynomial chaos expansion, which is denoted by the function

S, with P terms and a limited number of random variables n results in expres-

sion (8) [39, 40]:

RP (ω) = S [R (Q)] =

P∑
p=1

αpΨp (Q1,Q2, . . . ,Qn) =

P∑
p=1

αpΨp (Q) (8)

where p is the term based index for the series elements. The orthogonal poly-

nomials are generated numerically by using the Gramm–Schmidt [41] approach.

This allows us to define arbitrary probability density functions (PDFs) for the in-

put variables and eliminates the need to induce additional nonlinearity through

variable transformations. The expansion coefficients αp are estimated by using

discrete projection, which uses numerical integration techniques to determine

the coefficients by the expression

αp =
1

γp
E [R (Q) Ψp (Q)] =

1

γp

N∑
i=1

w(i) R
(
q(i)
)

Ψp

(
q(i)
)
, (9)

where E [·] denotes the expectation and w(i) denote the quadrature weights for

the respective quadrature points q(i). The inner product γj = 〈Ψj ,Ψj〉% can

be computed analytically and is defined w.r.t. the joint input PDF %Q (q) =∏n
i=1 %Qi (qi). Multidimensional integration is conducted using the Smolyak

sparse grid method [42]. The sparse grid quadrature rule is defined by

A (m,n) =
∑

m+1≤|l|≤m+n

(−1)m+n−|l|

 n− 1

m+ n− |l|

 · (U (1)
l1
⊗ · · · ⊗ U (1)

ln

)
, (10)

where U (1)
li

denotes one-dimensional quadrature operators with the level li ∈ N+

and l denotes the multi-index l = (l1, . . . , ln) ∈ Nn+. The dimension indepen-

dent maximum sparse grid level m controls the number of function evaluations

and the associated accuracy of the PCE. The same sparse grid level m = 2

was chosen for DNS, LES as well as URANS to ensure comparability. Gaussian200

quadrature rules on an isotropic sparse grid are applied. For each index set of l,

the linear grow rule gi = 2li−1 is utilized for the corresponding one-dimensional
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Gaussian quadrature orders gi. The Gauss points and weights are computed by

the Golub–Welsch [43] tridiagonal eigensolution. For sparse grid level m = 2,

univariate and bivariate effects in R are modeled with orthogonal polynomi-205

als of highest-order a = 4, resulting from the PCE construction according to

[44]. The open-source software Dakota 6.10 [45] was used as framework for the

determination of polynomial chaos expansions.

2.2.2. Karhunen-Loève Expansions

In the present work, random fields or stochastic processes are represented

using Karhunen-Loève Expansions [46, 47, 48]. The method itself is known

under a variety of names in different fields. In the field of CFD it is more widely

used under the name Proper Orthogonal Decomposition (POD). The method is

based on the spectral expansion of the process or field covariance function. The

random field discretization comprises a finite linear combination of orthogonal

deterministic basis functions multiplied by uncorrelated random variables. Let

R (x, ω) be a random field (RF), which is dependent on the deterministic field

variable x ∈ X and random event ω ∈ Ω, where X denotes the field domain and

Ω is the sample space. The RF can be divided into mean µR (x) and a centered

field R0 (x, ω) in the following way:

R (x, ω) = µR (x) +R0 (x, ω) . (11)

Subsequently, the centered field R0 (x, ω) can be approximated through the

truncated KLE of the RF

RK0 (x, ω) =

K∑
k=1

√
λkϕk (x) ζk (ω) , (12)

where ζk (ω) are mutually uncorrelated random variables with zero mean and

unit variance. The scalars λk and field-dependent deterministic functions ϕk (x)

are respectively the eigenvalues and orthogonal eigenfunctions to the homoge-

neous Fredholm equation of second kind:∫
X
C (xa,xb)ϕk (xb) dxb = λkϕk (xa) , (13)
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where

C (xa,xb) = E [R0 (xa, ω)R0 (xb, ω)] (14)

denotes the covariance function of R0 (x, ω). Furthermore, the orthonormality

relation applies for the eigenfunctions:∫
X
ϕk (x)ϕl (x) dx = δkl . (15)

The finite representation of RF by means of KLEs leads to minimization of the

mean-square error and allows for efficient representation of the covariance kernel.

All conducted calculations are based on spectral projection for the evaluation

using PCEs and, therefore, expectation values for the random field R (x, ω)

were determined with the same underlying numerical integration technique:

µR (x) = E [R0 (x, ω)] =

N∑
i=1

w(i) R
(
x,q(i)

)
. (16)

The covariance matrix Cab was constructed by taking the sample covariance

Cab =
1

N − 1

N∑
i=1

R0

(
xa,q

(i)
)
R0

(
xb,q

(i)
)
, (17)

because the square of the centered response functions yields complicated func-

tions, that are difficult to approximate. The determination by means of the

underlying quadrature for spectral projection led to larger errors compared to

the estimation with the sample covariance. Random field data is stored at

discrete field locations {xj}Bj=1. Thus, xa and xb represent discrete field loca-

tion pairs. For solving the integral within the Fredholm equation, the discrete

Karhunen-Loève method [49] is applied. Quadrature weights wb > 0 are in-

troduced, which reflect the local field width, e.g. for uniform discretization

wb = X/B is assigned, where X denotes the total field width. Consequently, the

discretized and matrix form of Eq. 13 with the notations Cab = C (xa, xb) and

ϕk,b = ϕk (xb) writes

B∑
b=1

wb Cab ϕk,b = λk ϕk,a ⇔ (CW) Φ = ΦΛ , (18)
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where C ∈ R(B×B), W ∈ R(B×B) is the diagonal quadrature weight matrix

with Wbb = wb. Φ and Λ are the right eigenvector and eigenvalue matrix,

respectively. Following [27, 28], the truncation of the KLE was accomplished

through a practical rule based on the eigenvalue decay rate, i.e. terms with

eigenvalues λk, which decayed to some fraction (e.g. 10%) of the largest eigen-

value λ1, are omitted. In the present work, the decay rate λK+1/λ1 ≤ 0.02 was

applied. According to [28, 27, 50], the mutually uncorrelated random variables

ζk with zero mean and unit variance were approximated with PCE, to establish

the relationship between Qi and ζk. This enables the combination of different

KLEs in a multifidelity manner, which will be discussed in Section 2.2.3 in more

detail. From the available simulation run data, for each mode k corresponding

values for ζk
(
q(i)
)

are derived through

ζk (ω) =
1√
λk

∫
X
R0 (x, ω)ϕk (x) dx

⇒ ζ
(i)
k =

1√
λk

B∑
b=1

wb R0

(
xb,q

(i)
)
ϕk (xb) . (19)

Subsequently, PCEs of the ζk random variables were created with the same

coefficient determination procedure as described in Section 2.2.1 :

ζPk (ω) =

P∑
p=1

βk,pΨp (Q) . (20)

In summary, the KLE combined with PCE can be described with the following

expression by means of the PCE-basis and field-dependent expansion coeffi-

cients:

RP,K0 (x, ω) =

P∑
p=1

[
K∑
k=1

√
λkϕk (x)βk,p

]
Ψp (Q) =

P∑
p=1

[
αKp (x)

]
Ψp (Q) (21)

2.2.3. Multifidelity Modeling210

The Multifidelity approach utilizes low-fidelity model predictions in addi-

tion to a reduced number of high-fidelity evaluations for building a MF–PCE.

If the low-fidelity model (e.g. URANS) is able to capture useful trends of the

high-fidelity model (e.g. LES), accurate UQ estimates can be achieved with
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reduced computational effort with respect to single high-fidelity models [51].215

Multifidelity PCE were first proposed by Ng and Eldred [52, 53]. Further im-

provement of the existing method was proposed by Berchier [54], which includes

the correction by the high-fidelity evaluations based on the current polynomial

chaos model. In the present work, the improved version is considered. The addi-

tive correction approach is explained in more detail below and reformulated with220

a recurrence relation in Equations 22. In the following, field-dependent random

quantities or random fields are used within the notations for generalization.

As first step for the construction of MF models, a low-fidelity PCE model

R̃ 1 (x,Q) = S 1 [R 1 (x,Q)] is computed, where Si denotes the truncated PCE

approximation for the ith multifidelity level. Afterwards, a discrepancy func-

tion D i+1 (x,Q) between the existing PCE model R̃ 1 (x,Q) and a higher-

fidelity computational model R i+1 (x,Q) is computed and again approximated

by PCE. The discrepancy PCE model D̃ i+1 (x,Q) is then added to the previous

lower-fidelity model R̃ i (x,Q) and yields the new model R̃ i+1 (x,Q), which can

be improved by another even higher-fidelity model. For this purpose a discrep-

ancy function is calculated again and finally added to the existing model. The

approach can be extended to any number of fidelity-level n+ 1 and can thus be

described with a recurrence relation as follows

R̃ 1 (x,Q) = S 1 [R 1 (x,Q)] , i = 1, . . . , n

D i+1 (x,Q) = R i+1 (x,Q)− R̃ i (x,Q) , (22)

R i+1 (x,Q) ≈ R̃ i+1 (x,Q) = D̃ i+1 (x,Q) + R̃ i (x,Q) .

In this way, PCEs and KLEs were derived from simulation runs according to

sparse grid levels mi = (2, 1, 0) for URANS, LES and DNS, respectively, and

combined to a MF model based on additive correction. The resulting MF model225

aims to approximate the high-fidelity DNS in a computationally efficient man-

ner. This modeling approach was chosen as one example. In practice, any

models with different model fidelity can be combined with each other, for ex-

ample URANS with stepwise finer resolution (this is particularly referred to as

multilevel) or with different physical models can be used.230
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2.2.4. Random Field Composition

Transient processes in the field of CFD are often characterized by highly

dynamic behavior. For this reason, their stochastic representation in presence

of uncertainties might be impeded. Therefore, a new approach for the repre-

sentation of time-dependent stochastic processes R (t,Q) is proposed and used235

for the uncertainty analysis of the buoyancy-induced mixing process. Since ev-

ery mixing process starts with the inhomogeneous state and ends with the fully

mixed homogeneous state, the chronological progress of desired responses can be

described by the mixing state. Responses can consequently be represented as a

function of the mixing state and thereby the complexity of the response function240

can be reduced, if the considered mixing processes behave phenomenologically

similar with respect to the mixing state. The mixing state is characterized by

a suitable quantity z. Thus, if the response is approximated as a function of

z, this yields the state-dependent random response field Y (z,Q). To establish

the connection of the mixing state with physical time, the mixing state z is245

also represented as a random field depending on time with Z (t,Q). Subse-

quently, realizations from the stochastic models y(s) and z(s) are derived from

identical input parameters for the state-dependent response and for the time-

dependent mixing state, respectively. As shown in the schematic representation

in Equations 23, the functions Y and Z can be combined through function250

composition Y (Z (t,Q) ,Q) to provide a time-dependent model for stochastic

y = R|t=Z−1 = R
(
Z−1 (z,Q) ,Q

)
= Y (z,Q) z = Z (t,Q)

⇓ ⇓

y(s) = Y
(
z,q (s)

)
z(s) = Z

(
t,q (s)

)
︸ ︷︷ ︸ (23)

r = R (t,Q) = Y |z=Z = Y (Z (t,Q) ,Q)

⇓

r(s) = Y
(
Z
(
t,q (s)

)
,q (s)

)
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processes. This allows for the derivation of realizations of the time-dependent

response r(s) = Y
(
Z
(
t,q (s)

)
,q (s)

)
from related samples y(s) and z(s). Af-

terwards, the realizations r(s) can be statistically evaluated. Figure 2 shows a

schematic sketch, which illustrates the RFC approach. At the top left one can255

see three field realizations for the state-dependent response y(s). At the bottom

right, three field realizations for the time-dependent mixing state z(s) are shown.

It becomes clear from the green highlighted realizations in Figure 2 that the re-

sponse for each state and the corresponding elapsed time to reach that state is

known. Consequently, the time-dependent response transients r(s), which are260

shown at the top right, can be derived. This derivation is illustrated using di-

rectional projection arrows between the plots in Figure 2. Starting from the

plot for the state-dependent response at the top left, projection arrows, which

are leading downward and projected on the corresponding realization for the

Figure 2: Schematic sketch of the Random Field Composition approach.
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time-dependent state z(s), are used to determine the time that elapses for the265

respective state. Subsequently, the elapsed time to reach the respective state is

projected upwards to the plot for the time-dependent response at the top right.

Afterwards, the corresponding response value from the plot at the top left is

projected to the plot at the top right. The intersection of the projection arrows

from the response value and from the elapsed time gives a response point of the270

time-dependent response representation. The complete response function can

thus be reconstructed from individual response points.

In this way, RFC allows for the description of the underlying stochastic

processes R (t,Q) by means of less complex random fields Y (z,Q) and Z (t,Q),

compared to straight consideration of the time-dependent stochastic process of275

the result quantities. This facilitates the approximation of stochastic processes

with high accuracy even with a justifiable number of simulation runs.

2.2.5. Error Estimation

According to [55], the accuracy of the truncated PCE models denoted by R̃

can be quantified by estimating the relative generalization error εgen, which is

defined as:

εgen =

E
[(
R (Q)− R̃ (Q)

)2
]

Var[R]
(24)

It is the expectation of the squared error normalized by the variance of the

actual random response Var[R]. The estimation can be conducted using the

expectation of the residual mean-square error by means of the quadrature rule,

which is used for PCE coefficient calculation, and taking the variance of the

PCE for normalization:

εres =

∑N
i=1 w

(i)
(
R
(
q(i)
)
− R̃

(
q(i)
))2

Var[R̃]
(25)

But the squared errors at hand are highly-nonlinear functions, which impede

the calculation of expectation through numerical quadrature. Therefore, the
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expectation of the squared error is determined using the estimator:

ε̃res =
1

N

∑N
i=1

(
R
(
q(i)
)
− R̃

(
q(i)
))2

Var[R̃]
(26)

This allows the estimation of error relative to the local surrogate model variance.

As global measure, the mean error estimate over the whole field or process

domain X with the total field width X is determined as follows:

〈ε̃res〉 = X−1

∫
X
ε̃res (x) dx . (27)

For the different stochastic models, the corresponding flow simulation realiza-

tions serve as a reference for the calculation of the error estimates. For the MF280

model, the DNS is used as a reference. The error is normalized by the variance

of the stochastic model at hand.

2.2.6. Variance-Based Decomposition

Uncertainties in responses can be apportioned to uncertainties in the input

parameters through the determination of variance-based measures of sensitivity

like the first-order Sobol indices SQi , the second-order Sobol indices SQiQj or the

total-order Sobol indices STQi [56]. Influence of univariate effects of individual

input parameters can be quantified using SQi . Variance fractions, which are

caused by interaction effects between input variables, can be determined by

second-order Sobol indices SQiQj or higher-order indices. In the present work

total-order indices STQi are presented, which yield the full variance contribution

of Qi caused by its univariate impact and interactions of any order. It is given

as

STi =
EQ∼i [VarQi (R|Q∼i)]

Var (R)
= 1− VarQ∼i [EQi (R|Q∼i)]

Var (R)
, (28)

where Q∼i indicates the set of all random input variables except Qi. The sum of

the total Sobol indices is always greater than or equal to one and thus it holds:285 ∑n
i=1 STi ≥ 1. This is due to the fact, that interaction effects are counted in

both STi and STj . The sum is equal to one or approximately one, if the response

model has additive behavior with low interactions between the variables.
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The Sobol-indices can be directly derived from a PCE representation [57].

For the RFC models, a Monte Carlo estimator is used for the derivation of the

total-order indices [58]:

STi ≈
N − 1

2N

∑N
j=1

(
R (Aj)−R

([
Ai

B

]
j

))2

∑N
j=1

(
R (Aj)−

[
N−1

∑N
k=1R (Ak)

])2 , (29)

where A and B are two independent sample matrices.
[
Ai

B

]
contains the ele-

ments for the ith input variable from the second matrix B.290

Variance-based decomposition allows for the complementary assessment of

random fields and stochastic processes in Section 3.4 and 3.5 by enabling the

assignment of response uncertainties to input uncertainties and by providing

further insights into the physical behavior of stochastic processes at hand.

3. Results and Discussion295

At first, the physical phenomenology of the mixing process within the DHC

is explained in Section 3.1. Subsequently, the analyzed Quantities of Interest

are introduced in Section 3.2, which is followed by results regarding Integral

Quantities in Section 3.3. State-dependent Random Fields and time-dependent

Stochastic Processes are presented and discussed in Section 3.4 and Section 3.5,300

respectively.

3.1. Physical Phenomenology

In this section, the physical phenomenology of the mixing process within the

DHC of the reference case is presented. This aims to facilitate the interpreta-

tion of the results. The mixing process comprises different consecutive phases,305

which are schematically shown over time in Figure 3. The mixing process is

initialized with a quiescent stratification of helium and air, which is shown in a

schematic sketch in Figure 3 on the left. The corresponding fluid property fields

for the initial state are depicted in Figure 4. Due to the temperature difference

between the left and right walls, a buoyancy-driven mixing process is initiated.310
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Figure 3: Schematic sketch for the consecutive phases of the mixing within the DHC.

Because of the different densities of the gas mixtures, two distinct circulating

natural convection flows are established, one in the upper helium-rich region,

and another in the lower air-rich region. During this stage, the mixing occurs

mainly by diffusive mass transport. This diffusive phase is illustrated in Figure

3 and is also evident from the fluid property fields in Figure 5. The diffusive315

mixing persists until the density difference between the upper and lower region

of the DHC is sufficiently small that the buoyancy forces become large enough

to erode the remaining helium layer. This eventually leads to complete mixing

Figure 4: Fluid property fields from reference case DNS for the initial state at Fo = 0.
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Figure 5: Fluid property fields from reference case DNS during the diffusive phase

at Fo = 3.1× 10−2.

Figure 6: Fluid property fields from reference case DNS during the erosion phase

at Fo = 4.8× 10−2.

of air and helium. The erosion is schematically shown in Figure 3. The fluid

property fields in Figure 5 also indicate this flow behavior. Dynamic transition320

stages, such as the erosion phase in particular, are characteristic for the prevail-

ing physics inside the reactor test containment of the THAI test series. Thus,

the testcase provides a good foundation for the subsequent application to the

reactor test containment.
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3.2. Quantities of Interest325

For the uncertainty analysis of the buoyancy-driven mixing process, appro-

priate result quantities for further investigation are defined. These are referred

to as Quantities of Interest (QoI) in the context of uncertainty quantification.

Convective heat transfer is of great importance in natural convection flows. For

this reason, the spatially averaged Nusselt number Nu over the respective walls

is analyzed, which provides information about the convective heat transfer in

dimensionless form. It is determined by the expression

Nu =
1

Awall

∫
Awall

∂T
∂n

∣∣
wall

H

∆T
dA , (30)

where n denotes the wall-normal unit vector and Awall denotes the face area

of the respective wall. The global kinetic energy is a measure of the occurring

convection mechanisms. Ek is the quotient of the global kinetic energy by a

reference kinetic energy α2Ra/H2, which contains the material properties of

air:

Ek =

(
α2

H2
Ra

)−1

· 1

M

∫
M

1

2
u2dm . (31)

m denotes the mass and M denotes the total mass in the fluid domain. Natural

convection develops within the cavity and this leads to the gradual diffusive and

convective mixing of the air and helium until the inhomogeneous mixture reaches

the homogeneous state. The progress of the mixing process is quantified by the

mixture uniformity σX , which is the volume-weighted standard deviation of the

mole fraction X from the homogeneous equilibrium state mole fraction X̄ over

the whole fluid domain. For normalization, the initial mixture uniformity σX0

of the configuration with constant helium mole fraction X0 = 40 vol% is used.

This yields the following expression for the normalized mixture uniformity:

ΣX =
σX
σX0

=

√
V −1

∫
V

(
X − X̄

)2
dV√

V −1
∫
V

(
X0 − X̄

)2
dV

. (32)

The mixing process starts from similar mixture uniformities depending on the

initial stratification of the helium layer. Therefore, the initial inhomogeneous
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state is characterized by ΣX ≈ 1. When the mixing proceeds, the normal-

ized mixture uniformity finally takes on the value ΣX = 0, which describes the

homogeneous state. For this reason, a criterion for the quantification of the330

mixing time can be derived, and therefore, by definition of an upper bound

ΣX ≤ ε Σ = 10−3, which ΣX has to fall below, the achievement of the ho-

mogeneous state can be quantified. When considering mass transfer processes,

the Fourier number Fo = D0 t/H
2 enables a dimensionless description of time.

Hence, the time, when the homogeneous state is reached, can be described by335

Foε = D0 tε /H
2.

Next to the temporal evolution of these result quantities, additional integral

quantities, that describe the mixing process, were considered and facilitate the

plain description of the transient profiles. For this purpose, the integral mean

value 〈R〉Foε is formed over the respective mixing time in Eq. 33:

〈R〉Foε = Fo−1
ε

∫ Foε

0

R (Fo) dFo . (33)

Moreover, the mean absolute deviation 〈R′〉Foε from the reference case, which

was described in Section 2.1.2, over the reference mixing time Foε/ref is defined

in Eq. 34. For the different CFD models the corresponding flow simulation of

the reference case serves as a reference.

〈R′〉Foε = Fo−1
ε/ref

∫ Foε/ref

0

|R (Fo)−Rref (Fo)|dFo (34)

Both integral quantities are illustrated with a schematic sketch in Figure 7.

The reference case is freely selectable. In practice, the reference case could be

selected in such a way that it corresponds to the simulation run with nominal

values. The results for 〈R′〉Foε can then be used to assess the extent to which340

the reference results are affected on average when uncertainties are taken into

account. By comparing the magnitudes of the deviations 〈R′〉Foε with those of

the integral mean values 〈R〉Foε , it is possible to determine whether the impact

is significant or negligible.

From the integral quantities, complementary statements about the complete345

transient can be derived from a single scalar value. Subsequently, the temporal
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Figure 7: Schematic sketch for the interpretation of the integral quantities 〈R〉Foε and

〈R′〉Foε .

evolution of quantities can be analyzed in more detail using the representation

of stochastic processes and random fields.

3.3. Integral Quantities

First of all, the integral quantities, which result from the buoyancy-driven350

mixing process, are presented and discussed. The integral mean and mean ab-

solute deviation of QoI’s, which include the Nusselt numbers Nu at enclosing

walls, the global kinetic energy Ek and the normalized mixture uniformity ΣX ,

are evaluated according to Section 3.2. Results regarding single-fidelity models

like URANS, LES and DNS are shown in Figure 8, 9 and 10. The URANS-PCE,355

LES-PCE and MF-PCE fidelities are assessed in comparison to DNS-PCE with

the respective probability density function, also written as fR (R), resulting

from the PCE surrogate. The PCE model accuracy itself is assessed through

the determination of an error estimate ε̃res based on the respective fidelity–

model simulation runs, according to Section 2.2.5. In Figure 8a the PDFs for360

the mean Nusselt Number on the left wall 〈Nul〉Foε are depicted resulting from

PCE surrogates. Compared to the DNS-results, LES slightly underestimates

〈Nul〉Foε , whereas URANS slightly overestimates the mean Nusselt number on

the left wall. The variance of URANS and LES agrees very well with the DNS,

when comparing the dispersion of the different distributions. As a consequence365
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Figure 8: Single-fidelity PDFs and respective error estimates ε̃res for Nusselt number:

(a,e) on the left wall, 〈Nul〉Foε and 〈Nu′l〉Foε ; (b,f) on the right wall, 〈Nur〉Foε and

〈Nu′r〉Foε ; (c,g) on the bottom wall, 〈Nub〉Foε and 〈Nu′b〉Foε ; and (d,h) on the top

wall, 〈Nut〉Foε and 〈Nu′t〉Foε .

of the overestimation of the Nusselt number on the left wall by URANS, the

Nusselt number on the right wall 〈Nur〉Foε in Figure 8b is underestimated,

since larger incoming heat also causes more heat loss at the cold wall. The same

applies for LES in a vice versa manner. Error estimates of up to ε̃res ≈ 0.04,

which means the expectation of the squared error is 4% of the PCE variance,370

indicate, that the approximation of Nu by means of PCE works very well. As

depicted in Figures 8c-d, the PDFs for the top and bottom wall Nusselt number

〈Nut〉Foε and 〈Nub〉Foε nearly coincide with the DNS reference. The error that
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Figure 9: Single-fidelity PDFs and respective error estimates ε̃res for global kinetic

energy: (a) for 〈Ek〉Foε ; and (b) for 〈E′k〉Foε .

occurs due to the PCE approximation is negligible. The mean absolute devia-

tion for the Nusselt numbers at the left and right wall 〈Nu′l〉Foε and 〈Nu′r〉Foε375

in Figures 8e,f shows that URANS predicts slightly lower variability compared

to the well comparable LES and DNS. The error is still reasonably low. The

PDFs for 〈Nu′t〉Foε and 〈Nu′b〉Foε in Figure 8g,h agree very well with small error

estimates. The results for the global kinetic energy 〈Ek〉Foε and 〈E′k〉Foε are

depicted in Figure 9. LES is able to properly predict 〈Ek〉Foε in comparison380

with DNS. URANS underestimates the mean global kinetic energy with lower

variance. According to the error estimates, the approximation of higher-fidelity

models like DNS is impeded, because of increasing complexity in terms of spatial

and temporal sensitivity of results with increasing fidelity level. For the predic-

tion of 〈E′k〉Foε deviations arise for both URANS and LES. Error estimates of385

the single PCE models are reasonably low.

The consideration of the mixing time measured by Foε, shown in Figure

10a, yields that URANS predicts the PDF very well. If one compares the PDF

profiles, LES achieves a variance comparable to that of DNS, but underestimates

the expectation. The integral mean value for the normalized mixture uniformity390

〈ΣX〉Foε in Figure 10b indicates differences between URANS, LES and DNS.
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Figure 10: Single-fidelity PDFs and respective error estimates ε̃res for mixing time and

normalized mixture uniformity: (a) for Foε; (b) for 〈ΣX〉Foε ; and (c) for 〈Σ′X〉Foε .

In this case, the error estimate yields a large error for the DNS–PCE, since the

present PCE model mispredicted the expectation. For this reason, deviations of

the DNS-PCE model from the simulation runs occur. The PDFs for 〈Σ′X〉Foε in

Figure 10c on the other hand show very good agreement between the DNS with395

LES and URANS. Consequently, the variability with respect to the reference

case simulations is described very accurate through all single-fidelity models

under investigation.

Table 3: Comparison of computational costs of single-fidelity and multifidelity

PCE/KLE construction.

Basis for the Number of simulation runs CPU time

PCE/KLE construction URANS LES DNS in core-h rel. to DNS rel. to LES

Single-fidelity

URANS 105 0 0 1623 0.001 0.014

LES 0 105 0 116559 0.08 1.0

DNS 0 0 105 1451520 1.0 12.453

Multifidelity 105 14 1 30988 0.021 0.266

Subsequently, results from multifidelity models are shown. Multifidelity

Polynomial Chaos Expansions reduce the number of high-fidelity simulations400

and attain significant savings in computing resources while accurate results can

be achieved simultaneously. As can be seen in Table 3, through the MF ap-
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proach the computational cost for the determination of stochastic models was

reduced to 2% compared to model construction based on single-fidelity DNS.

Compared to the single-fidelity LES, the computational cost is merely 26.6%.405

PCE models for the QoI’s were constructed from simulation runs according to

sparse grid levels mi = (2, 1, 0) for URANS, LES and DNS, respectively, and

combined in a multifidelity manner. The results are assessed by comparison

with DNS-PCE and by determination of error estimates.
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Figure 11: Multifidelity PDFs and respective error estimates ε̃res for Nusselt number:

(a,e) on the left wall, 〈Nul〉Foε and 〈Nu′l〉Foε ; (b,f) on the right wall, 〈Nur〉Foε and

〈Nu′r〉Foε ; (c,g) on the bottom wall, 〈Nub〉Foε and 〈Nu′b〉Foε ; and (d,h) on the top

wall, 〈Nut〉Foε and 〈Nu′t〉Foε .
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Figures 11a-d demonstrate that the MF-PCE provides very accurate predic-410

tions of the integral mean Nusselt number at the enclosing walls. The distri-

butions almost coincide and the occurring error, which is based on DNS runs,

yields low values. Furthermore, the PDFs in Figure 11e-h show good agreement

with the DNS distributions. However, the higher error estimates for 〈Nu′l〉Foε
and 〈Nu′r〉Foε indicate that the model prediction deviates from the DNS in415

certain regions of the random input space.

The MF results for the integral mean global kinetic energy 〈Ek〉Foε in Figure

12a show that MF is able to predict a distribution with similar variance as

for DNS but with a slightly shifted expectation. In addition, MF achieves a

comparable error estimate like the DNS. For the prediction of 〈E′k〉Foε in Figure420

12b, on the other hand, a larger difference between the distribution for MF

and DNS becomes clear. In this case, the lower-fidelity models in form of LES

and URANS predict different trends than the DNS and the prerequisite for the

MF approach is no longer completely fulfilled. This is due to the fact that the

reference case, the calculation is based on, is different for URANS, LES and425

DNS. As a consequence, the error estimate ε̃res returns larger values for MF.

The results in Figure 13a regarding the mixing time Foε show good agreement
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Figure 12: Multifidelity PDFs and respective error estimates ε̃res for global kinetic

energy: (a) for 〈Ek〉Foε ; and (b) for 〈E′k〉Foε .
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Figure 13: Multifidelity PDFs and respective error estimates ε̃res for mixing time and

normalized mixture uniformity: (a) for Foε; (b) for 〈ΣX〉Foε ; and (c) for 〈Σ′X〉Foε .

with the DNS results and exhibit a lower error than the DNS surrogate model

itself. This is due to the slightly incorrect estimation of the expectation for

the DNS. The same situation occurs for the integral mean mixture uniformity430

〈ΣX〉Foε . The MF model yields an error estimate, which is even lower than for

DNS indicating faster convergence of the PCE in the former case. The PDFs

for 〈Σ′X〉Foε in Figure 13c on the other hand show very good agreement between

the DNS and MF with an acceptable error.

The evaluation using scalar integral quantities provides a first insight for435

the assessment of stochastic processes or random fields. But for detailed in-

vestigation, the consideration of the chronological progress, instantaneous flow

features and sensitivities is essential. Therefore, state-dependent random fields

are derived in the following section and finally, representations for the under-

lying stochastic processes are constructed using the proposed Random Field440

Composition.

3.4. State-dependent Random Fields

The construction of models for the representation of stochastic processes,

which occur during the buoyancy-induced mixing process, is associated with

difficulties, since the transient profiles show highly dynamic behavior. Thus,445

32



the approximation of time-dependent stochastic processes by means of PCE or

KLE with respect to time, leads to poor results, when it comes to dynamic

effects, as will be shown in Section 3.5. A huge number of simulation runs

would be required for the approximation of strong nonlinear effects within the

transient with a stochastic model. For this reason, the RFC approach is used450

for the description of highly dynamic transient processes with justifiable com-

putational effort. This includes the partitioning of the stochastic process into

less complex random fields. The state variable was chosen to be the normalized

mixture uniformity z = ΣX , which describes the mixing state. Based on this,

the representation of the stochastic process comprises the respective random re-455

sponses Y (ΣX ,Q), such as heat flow, velocities or local concentrations, together

with the random elapsing time through the Fourier number Fo = Fo (ΣX ,Q),

each as a function of the normalized mixture uniformity ΣX . Next to the ben-

efits of using RFC, the representation of the random fields as a function of the

mixing state through ΣX allowed for consistent construction of the MF model,460

because PCEs, which describe the same condition or mixing state, were com-

pared and improved by the discrepancy function. In the following, the random

fields Nul (ΣX ,Q), Ek (ΣX ,Q) and Fo (ΣX ,Q) are discussed for the investiga-

tion of heat transfer, convection mechanisms and mixing progress, respectively.

The evaluations were conducted for the single-fidelity models URANS, LES and465

DNS along with MF models. Corresponding results are shown in Figure 14.

The RF were approximated with KLE in conjunction with PCE. The KLEs

were truncated such that: λK+1/λ1 ≤ 0.02. Sample realizations ζ
(i)
k for each

mode k with respect to the simulation realizations were calculated. PCEs for ζk

were built using the Smolyak sparse grid method. Consistency of the Karhunen-470

Loève theorem is fulfilled, since expectation values for ζk are close to zero, the

variance is approximately one and ζk are mutually uncorrelated. Since the major

interest of the investigation lies in the consideration of transient mean profiles,

field realizations for KLE construction were filtered with a gaussian kernel with

standard deviation σ = 0.005 · X, where X denotes the total field width of the475

domain. This also allows dynamic buoyancy oscillations and turbulent fluctua-
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tions to be filtered out and facilitates approximations with numerical models.

Statistics for the characterization of the presented RF comprise the expecta-

tion µ, the expectation plus and minus the standard deviation µ±σ, the median

Q0.50 and quantiles Q. Regions between pairwise quantiles are highlighted with480

color. The quantile intervals of the random fields Nul (ΣX ,Q), Ek (ΣX ,Q)

and Fo (ΣX ,Q) are highlighted in red, blue and green, respectively. Quantile

intervals [Qa, Qb] towards median are shown progressively darker. From the

statistics in Figure 14, it can be deduced that the mixing process consists of

Figure 14: State-dependent random fields over normalized mixture uniformity ΣX

shown column-wise for URANS, LES, DNS and MF and row-wise for the left-wall

Nusselt number Nul, for the global kinetic energy Ek and for time by the Fourier

number Fo.
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different phases. The profiles for Ek reveal that the mixing process starts with485

an initial transient process, followed by a diffusive mixing phase with stagnant

amount of kinetic energy and a final convective erosion phase, which is charac-

terized by the steep increase in kinetic energy at the end. This is also evident

from the profiles for the Nusselt number showing initially oscillating values,

stagnant consecutive magnitudes for Nul and a final undershoot, which takes490

place during erosion. Almost constant slope at the beginning and decreasing

slope of the mean profile for Fo also provide an indication for the described

behavior.

If one takes a closer look at the individual RF’s, Figure 14 shows that the

URANS-KLE model slightly overestimates Nul during the diffusive phase495

{ΣX |0.8 ≥ ΣX ≥ 0.2} compared to the DNS-KLE model. Moreover, the vari-

ance during erosion {ΣX |0.2 ≥ ΣX ≥ 0} is predicted with lower values than

for the DNS-KLE. The LES-KLE, on the other hand, is able to capture the

progress behavior, but also provides a slightly lower variance prediction in the

interval {ΣX |0.4 ≥ ΣX ≥ 0} compared to the DNS-KLE. The MF–KLE yields500

good results regarding the profile and the variance. Minor oscillations can be

seen in the visualization of the MF results. These originate from the correction

with the second discrepancy function between LES-KLE and DNS-KLE, each

of which includes a single simulation. Therefore, dynamic processes over time

become visible. The profiles for Ek show, that the URANS-KLE underesti-505

mates the global kinetic energy during the erosion {ΣX |0.1 ≥ ΣX ≥ 0}, if the

DNS-KLE is considered as a reference. Regarding the erosion, the LES-KLE

provides comparable predictions to the DNS-KLE. The MF-KLE leads to fur-

ther improvement of the prediction accuracy. In the initial transient process as

well as in the diffusive phase, all models provide similar predictions.510

The statistical results regarding Fo for URANS-KLE match well with the

DNS-KLE. In comparison, the URANS-KLE predicts a slightly larger uncer-

tainty band. It is noticeable, that the LES-KLE underestimates the mixing

time, as already discussed by means of Foε in Section 3.3, and this leads to

time-shifted statistics towards lower values. Nevertheless, the results for the515
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MF-KLE again show good agreement with DNS-KLE results. For Fo (ω), the

URANS-KLE would provide an already sufficient accuracy level and building

a surrogate based on multiple fidelities would not be necessary. In large-scale

applications, however, the accuracy of the respective model with regard to a

random response variable is unknown and a detailed assessment using refer-520

ence results (e.g. in form of DNS) is infeasible. Therefore, when using the MF

approach, the assumption is made that the incremental increase in model ac-

curacy also increases the prediction accuracy. However, this does not have to

be inevitably the case for the description of highly-nonlinear dynamic systems

encountered in CFD.525

As stated before, the final erosion process of the mixing process is character-

ized by its dynamic behavior and its strong time dependency. For this reason,

the construction of stochastic representations is impeded. Therefore, RF are

constructed over the mixture uniformity ΣX , which facilitates stochastic mod-

Figure 15: Stacked total-order Sobol Indices STi over normalized mixture uniformity

ΣX shown column-wise for URANS, LES, DNS and MF and row-wise for the left-wall

Nusselt number Nul, for the global kinetic energy Ek and for time by the Fourier

number Fo.
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eling. As shown in Figure 15, the total-order Sobol indices reveal nearly additive530

character of the RFs, since they sum up approximately to one:
∑n
i=1 STi ≈ 1.

Interaction effects are thus significantly reduced compared to the straight time-

dependent consideration, which will be discussed in more detail in the next

Section. As can be seen in Figure 15, the variance of all quantities at the begin-

ning of the mixing process is mainly determined by the initial structure of the535

helium stratification, which changes due to the uncertain parameter (∆X )rel. In

terms of heat transfer measured by the left-wall Nusselt number Nul, the vari-

ance after the initial process is mainly caused by the uncertain characteristic

temperature difference (∆T )rel and the uncertain temperatures of the bottom

and top wall (T |b,t)rel. The same also applies for the global kinetic energy Ek.540

During the erosion, however, both Nul and Ek show a very complex variance

behavior. The stacked total-order Sobol indices for the elapsed time in form

of Fo show that the variance is initially caused by the uncertain structure of

the helium layer through (∆X )rel. Subsequently, the mixing process mainly

proceeds by the influence of the uncertain characteristic temperature difference545

(∆T )rel and the uncertain molecular diffusion coefficient (D)rel.

In the next section, results for the description of time-dependent stochastic

processes, which characterize the uncertain buoyancy-driven process, are dis-

cussed.

3.5. Time-dependent Stochastic Processes550

For transient processes, which are subject to uncertainties, it is of particular

importance to approximate the temporal evolution of QoI’s within the possible

random space. The stochastic model has to be sufficiently accurate and reli-

able in order to draw conclusions. For the investigated buoyancy-driven mixing

process, the construction of a precise stochastic model is not readily possible555

in practice. The straight representation of the underlying stochastic processes

of QoI’s in terms of time is impeded through the strong time-dependency of

the convective erosion process, which takes place inside the cavity at the end of

the mixing process. This physical behavior is also characteristic for the onset of
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convective erosion during the buoyancy-driven mixing process inside the reactor560

test containment. After initial diffusive mixing, the erosion of the helium layer

begins at a certain point in time. The dynamic effects, which occur during this

erosion process, are difficult to approximate. Nevertheless, for the construction

of reliable stochastic models and for the derivation of statistics, this transient

behavior has to predicted in a proper way.565

In the following, results for the representation of the time-dependent stochas-

tic processes Nul (Fo,Q), Ek (Fo,Q) and ΣX (Fo,Q) are discussed and ana-

lyzed in more detail. The stochastic processes are visualized with the expecta-

tion µ, the expectation plus and minus the standard deviation µ±σ, the median

Q0.50 and with quantiles Q. Regions between pairwise quantile functions are570

highlighted with color.

First of all, the single-fidelity statistics and error estimates, which were de-

rived from the time-dependent KLE models based on DNS runs, are presented

Figure 16: Statistics and error estimate ε̃res derived from KLE model in terms of

time for the time-dependent stochastic processes of DNS over time via dimensionless

Fourier number Fo: (a) Left-wall Nusselt number Nul;

(b) global kinetic energy Ek; and (c) normalized mixture uniformity ΣX .
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Figure 17: Temporal profile realizations from input parameters for stochastic model

construction over time via dimensionless Fourier number Fo shown row-wise for time-

dependent KLE model and DNS runs: (a) Left-wall Nusselt number Nul;

(b) the global kinetic energy Ek; and (c) normalized mixture uniformity ΣX .

in Figure 16 to indicate the model deficiencies that occur, when stochastic mod-

els were built directly with respect to time. Furthermore, differences between575

temporal profiles of DNS runs and derived temporal profiles from constructed

KLE models, which are shown in Figure 17, substantiate appearing inaccuracies

of the model. From Figures 16a-c one can observe from the temporal evolution

of the error estimate ε̃res, that the QoI’s are reasonably predicted in the time

interval {Fo| 0 ≤ Fo ≤ 0.04}. However, at the onset of dynamic processes due580

to convective erosion during the interval {Fo| 0.04 ≤ Fo ≤ 0.08}, deviations

are indicated. This error is also manifested in the statistics, which especially

becomes visible from the strongly oscillating profiles for Nul and Ek in Fig-

ure 16a-b. In Figure 17, temporal profiles for the derived KLE model, which

result from the same input parameters as for the construction of the stochastic585

model, reveal that the model leads to mispredictions compared to corresponding
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DNS results after the start of convective erosion. It can be assumed, that the

actual error is larger than the error estimate indicates, since the error estimate

is derived with the conducted simulation runs on the basis of which the KLE

model was constructed and consequently works best. But, as the model does590

not fully represent the physics correctly, the error might be larger for other

parameter input combinations.

Based on these findings, efforts were made to overcome this model deficiency.

As shown in Section 3.4, the chronological progress of the mixing process can

be described by the mixing state, with respect to which the mixing processes595

are phenomenologically similar i.e. timing of erosion takes place at comparable

mixing states. The derivation of these state-dependent random fields allows for

representation of stochastic processes through their combination via RFC. As

shown in Equations 35, state-dependent random response fields Y (ΣX ,Q) were

considered together with the random field for elapsed time for the achievement600

of a mixing state Fo (ΣX ,Q). By means of function composition, response real-

izations r(s) for the input parameters q (s) with respect to the input PDFs were

derived. Subsequently, statistics like estimates of the expectation µ, standard

deviation σ or quantiles Q were determined.

y = R|Fo=Fo = R (Fo (ΣX ,Q) ,Q) Fo = Fo (ΣX ,Q)

⇔ y = Y (ΣX ,Q) ⇔ ΣX = Fo−1 (Fo,Q)

⇓ ⇓

y(s) = Y
(
ΣX ,q

(s)
)

Σ
(s)
X = Fo−1

(
Fo,q (s)

)
︸ ︷︷ ︸ (35)

r = R (Fo,Q) = Y |ΣX=Fo−1 = Y
(
Fo−1 (Fo,Q) ,Q

)
⇓

r(s) = Y
(
Fo−1

(
Fo,q (s)

)
,q (s)

)
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Results, which were obtained from the RFC approach, are presented here-605

inafter. Single-fidelity statistics from URANS (Figure 18), LES (Figure 19),

DNS (Figure 20) and from the additive MF model (Figure 21) are discussed.

The results are presented in the same manner as before. Starting with the

results from URANS (Figure 18) concerning the left-wall Nusselt number Nul

in Figure 18a, it becomes clear once again that URANS is slightly overestimat-610

ing the Nusselt number in the early diffusive phase {Fo| 0 ≤ Fo ≤ 0.04}, when

the results for DNS in Figure 20a are taken as reference. This has already been

observed during the evaluation of the state-dependent fields in Section 3.4.

Figure 18: Statistics, error estimates ε̃res and stacked total-order Sobol indices ST

derived from RFC model in terms of state for the time-dependent stochastic processes

of URANS over time via dimensionless Fourier number Fo:

(a) Left-wall Nusselt number Nul; (b) global kinetic energy Ek; and

(c) normalized mixture uniformity ΣX .
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Figure 19: Statistics, error estimates ε̃res and stacked total-order Sobol indices ST

derived from RFC model in terms of state for the time-dependent stochastic processes

of LES over time via dimensionless Fourier number Fo:

(a) Left-wall Nusselt number Nul; (b) global kinetic energy Ek; and

(c) normalized mixture uniformity ΣX .

In addition, the results for the integral mean value for the Nusselt number

〈Nul〉Foε in Section 3.3 provided a first indication for the overestimation. As615

noted in the discussion of state-dependent fields, the uncertainty band is nar-

rower during the erosion phase {Fo| 0.04 ≤ Fo ≤ 0.08} compared to the DNS.

The predictions based on LES (Figure 19) for Nul in Figure 19a show correct

temporal behavior with respect to profile shape and variance. However, the

mixing time is underestimated by LES and as a result, the profiles are shifted620

to lower values in time. From Figure 21a it is noticeable, that MF is able to

reflect the DNS results very well. Slight differences are visible for the quantiles
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during the erosion phase.

Regarding the global kinetic energy Ek, one can state that URANS in Fig-

ure 18b predicts lower values during erosion than the DNS and thus a smaller625

uncertainty band, which is characterized by the quantiles. LES (Figure 19b) is

able to predict the magnitude of the kinetic energy, but with shifted profiles in

time. MF (Figure 21b), on the other hand, allows for proper prediction of Ek in

terms of magnitude and timing. The initial transient process and the diffusive

phase is predicted in a similar manner by all single-fidelity and multifidelity630

models.

Figure 20: Statistics, error estimates ε̃res and stacked total-order Sobol indices ST

derived from RFC model in terms of state for the time-dependent stochastic processes

of DNS over time via dimensionless Fourier number Fo:

(a) Left-wall Nusselt number Nul; (b) global kinetic energy Ek; and

(c) normalized mixture uniformity ΣX .
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Figure 21: Statistics, error estimates ε̃res and stacked total-order Sobol indices ST

derived from RFC model in terms of state for the time-dependent stochastic processes

of MF model over time via dimensionless Fourier number Fo:

(a) Left-wall Nusselt number Nul; (b) global kinetic energy Ek; and

(c) normalized mixture uniformity ΣX .

The statistics for ΣX from URANS in Figure 18c show very good agreement

with the DNS in Figure 20c. The dispersion is slightly overestimated. There

is also good agreement between the LES in Figure 19c with DNS. However,

by virtue of the underestimation of mixing time, the profiles are shifted in635

time. Finally, the multifidelity model (Figure 21c) also manages to accomplish

comparable results to the DNS.

The temporal profile realizations from DNS runs and from RFC model

derivation, which were drawn from input parameters for stochastic model con-

struction, are depicted in Figure 22. RFC models, which are based on stochastic640
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KLE models from DNS and MF, achieve comparable physical behavior when

compared with DNS runs in bottom Figure 22. There are merely mispredictions

during the initial transient process. However, the diffusive mixing and highly

dynamic erosion mechanisms, which are of major interest, are correctly repro-

duced by the stochastic models. Comparison of the DNS-RFC results in Figure645

22 with the DNS-KLE results in Figure 17 clearly highlight the better perfor-

mance of the RFC methodology compared to the straight KLE construction in

terms of time.

Figure 22: Temporal profile realizations from input parameters for stochastic model

construction over time via dimensionless Fourier number Fo shown row-wise for MF-

RFC, DNS-RFC and DNS: (a) Left-wall Nusselt number Nul;

(b) the global kinetic energy Ek; and (c) normalized mixture uniformity ΣX .
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The stacked total-order Sobol indices in Figures 18 - 21, which are calculated

based on RFC, also confirm the benefits of the RFC approach, if one compares650

the results with the state-dependent Sobol indices from Figure 15 in Section 3.4.

During the diffusive phase, the time-dependent random responses exhibit addi-

tive behavior according to Figure 18 - 21. But the start of the erosion phase,

on the other hand, is accompanied by strong interaction effects between the

random input variables, since the sum of STi clearly exceeds the value of one.655

Consequently, the approximation of interaction effects is facilitated by partition-

ing the stochastic process into individual random fields within RFC. It becomes

clear, that at the beginning of the mixing process the variance of all random

responses is mostly caused by the initial structure of the helium stratification,

which changes due to the uncertain parameter (∆X )rel. The variance of mixing660

state measured by ΣX is mainly based on the uncertain characteristic tempera-

ture difference (∆T )rel and the uncertain molecular diffusion coefficient (D)rel,

as can be seen in Figures 18 - 21c. The uncertain characteristic temperature

difference (∆T )rel also shows major influence on Nul and Ek in Figures 18 -

21a,b. Since transient effects, such as the convective erosion process, depend665

on the mixing progress and thus on time, the uncertain input parameter (D)rel,

which significantly contributes to the progress of the mixing process next to

(∆T )rel, leads to considerable proportion of the variance for Nul and Ek after

the start of the erosion.

Finally, complementary error estimates ε̃res for the presented RFC models670

are discussed. As can be seen in Figures 18 - 21, the temporal evolution of the

estimates ε̃res also show that the error takes on larger values at the beginning of

the mixing process. This is due to the fact, that the initial transient processes

within the possible random space proceed similar in terms of time and therefore,

in turn approximation is hindered by the state-dependent perspective. Hence,675

the time-dependent KLE model in Figure 17 provides good predictions for the

initial transient process at the beginning, but less precise results when state-

dependent dynamic processes occur.

Furthermore, when looking at the error estimates ε̃res in Figures 18-21, error
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peaks are still evident during the erosion phase for Nul and Ek, due to the model680

prediction of erosion time, which deviates from the reference simulation runs.

But after the stochastic model transient catches up the simulation transient,

the error decreases again. For the determination of the mean error estimate

〈ε̃res〉 of ΣX values until the expectation reaches zero are considered, since

the variance subsequently becomes negligibly small. In summary, the results685

for the mean error estimate 〈ε̃res〉 show that ΣX is well predicted, whereas

for Nul and Ek, it indicates potential model improvement through additional

simulation runs and further model refinement. As an engineering approach,

the model deficiencies for the initial transient process could be eliminated by

considering the individual phases separately i.e. the initial transient process690

is investigated as a time-dependent stochastic process, because the phenomena

occur synchronously, whereas the diffusive and erosion phase is analyzed with

state-dependent random fields and RFC. Through the division into individual

field or time domains, single random field or stochastic process representations

can be determined with the locally advantageous properties, and thus the overall695

prediction accuracy can be increased.

4. Conclusions

Predictions of complex phenomena by means of computational models are

often subject to uncertainties. Computational Fluid Dynamics of thermal hy-

draulics within light water reactor containments is one representative for nu-700

merical models, which is associated with uncertainties, whose consideration is

of great importance. As a basis for the uncertainty analysis of buoyancy-driven

mixing processes within the THAI test vessel, methodologies for the assessment

of uncertainties were established using a generic test case, which corresponds to

the Differentially Heated Cavity. An initial stratification with 40 vol% helium705

next to air was defined in the upper third. Due to the formation of natu-

ral convection, a buoyancy-driven mixing process takes place in the enclosure.

Arising uncertainties in Quantities of Interest, which originate from uncertain
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input parameters, were evaluated using stochastic spectral methods, such as

Polynomial Chaos Expansions and Karhunen-Loève Expansions. The stochas-710

tic representations in this paper include results for scalar random responses,

random fields as well as stochastic processes. Single-fidelity CFD models like

Unsteady Reynolds-Averaged Navier–Stokes, Large Eddy Simulation, and Di-

rect Numerical Simulation are analyzed and combined to three–level multifi-

delity models. The investigation of total-order Sobol indices allowed for the715

assignment of variance proportions to the individual random input variables

and further insights into stochastic response behavior were gained. Error es-

timates were determined for the assessment of the respective model accuracy.

In addition, Random Field Composition is introduced, as a promising approach

for the description of highly-dynamic stochastic processes.720

First, uncertain integral result quantities were approximated by PCEs. The

stochastic models for these quantities facilitated the plain description of tran-

sient profiles and allowed for a first derivation of statements about occurring

heat transfer, convection and mixing behavior. Differences between the indi-

vidual single-fidelity approaches became apparent. As a solution, MF models725

were deduced, which attained comparable results to the DNS and allowed for a

significant reduction up to 98% of the computing time in comparison to model

construction based on single-fidelity DNS.

Subsequently, the aim was to approximate time-dependent stochastic pro-

cesses at hand. For this purpose, Random Field Composition was introduced730

and applied. To this end, the stochastic processes were partitioned into sin-

gle random fields for the QoI’s as a function of the mixing state through the

construction of KLEs. Stochastic models for single-fidelity and multifidelity

random fields were derived in this way. The representation of state-dependent

random fields for the result quantities leaded to less complex approximations in735

comparison to the time-dependent stochastic processes, since the mixing process

remains phenomenologically similar with changing parameters regarding the in-

put uncertainties. Afterwards, function composition of the individual random

fields allowed for the coupled representation of the stochastic processes. The
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derived statistics revealed that URANS or LES slightly deviate from results740

regarding DNS. The present MF models accomplish good agreement with the

DNS reference. Hence, MF models have potential for the achievement of higher

accuracy compared to single lower-fidelity models at moderate extra cost.

In industrial practice, uncertainty analysis of high-fidelity models, like DNS,

is uneconomical or not even feasible with the available resources. Hence, for745

the accomplishment of reliable results for uncertainties in complex large-scale

applications and to ensure the feasibility of computations with justifiable ef-

fort, multifidelity models, which can be built from any different model types

as by using different mesh resolution or different modeling approaches, provide

a good basis and making assumptions serves as a reasonable trade-off between750

accuracy and required computational resources. In addition, RFC achieved effi-

cient stochastic representation of highly-dynamic transient processes, which also

characterize the unsteady flow behavior within the THAI-TH32 experiment. As

a practical lesson, the following can be inferred for future studies. The funda-

mental concept behind RFC involves the simplification of functions, that need755

to be approximated, by identifying patterns or relationships within the under-

lying phenomenon, which is investigated. If the function to be approximated

can be decomposed into less complex components, this can lead to a reduction

in the number of computational runs, which are required to approximate the

overall function. As a result, the model construction process is computation-760

ally efficient from the outset. Therefore, the promising RFC approach together

with multifidelity modeling serves as an appropriate methodology for uncer-

tainty quantification of large-scale applications and will be pursued in further

investigations of the application-oriented THAI-TH32 CFD validation case.
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