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Abstract
For the investigation of uncertainties in high dimensional spaces of computationally 
expensive engineering applications, reliable Uncertainty Quantification (UQ) meth-
ods are needed. These methods should provide accurate and efficient High-Dimensional 
Model Representations of stochastic results using a reasonable number of calculations. 
Therefore, the PCE–HDMR approach (Polynomial Chaos Expansion–High-Dimensional 
Model Representation) is utilized to qualify appropriate UQ methods for large-scale com-
putations in the field of Computational Fluid Dynamics. This technique is a combination 
of Cut-HDMR, a hierarchical decomposition modeling approach, with PCE. To demon-
strate its effectiveness, the PCE–HDMR methodology in conjunction with complementary 
modeling techniques is applied for the UQ analysis of a buoyancy-driven mixing process 
between two miscible fluids within the Differentially Heated Cavity of aspect ratio 4. The 
results include a thorough probabilistic representation of time-dependent response quanti-
ties that comprehensively describe the mixing process. The stochastic models are derived 
from Large Eddy Simulations using PCE–HDMR and the Sparse Grid Method, which 
serves as a reference for the results from PCE–HDMR. The results show that PCE–HDMR 
provides accurate statistics of the modeled time-dependent stochastic processes and shows 
good agreement with the reference results. Thus, PCE–HDMR indicates great potential for 
UQ of technical-scale computations due to its efficiency and flexibility in the construction 
of stochastic models.
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1 Introduction

For the application of Uncertainty Quantification (UQ) to complex engineering applica-
tions with high-dimensional and computationally expensive character, it is important to 
employ reliable and efficient methods for uncertainty analysis. Therefore, as a basis for the 
application to a technical scale experiment (Freitag and Schmidt 2022), the methodology is 
established using a generic test case from literature. This test case reflects similar physics 
to those anticipated for the application case. The utilization of a simplified configuration in 
the initial application of existing methods provides an opportunity to assess and enhance 
these methods at a reasonable computational cost. As a test case, the Differentially Heated 
Cavity (DHC) with aspect ratio 4 (Trias et al. 2007, 2010a, b) was chosen and extended to 
a superimposed mixing process. It is a tall cavity with hot left wall and cold right wall, in 
which natural convection flow and buoyancy-induced mixing processes occur in the pres-
ence of two gas mixtures with different densities. In the present work these transient mix-
ing processes are modeled with Large Eddy Simulation (LES). The definition of uncer-
tain input parameters within the Computational Fluid Dynamics (CFD) simulation leads to 
uncertainty in results or responses, which need to be quantified with UQ methods.

In the following, a brief summary of related UQ studies, which are reported in the 
literature, is provided. The investigation of single-phase mixing in a flow channel has 
been explored in several research studies (Badillo and Kapulla 2013; Fokken et al. 2019; 
Cutrono et al. 2018, 2019, 2020). The CFD simulation involved the turbulent mixing of two 
parallel streams with different densities that were initially separated by a splitter plate. Pol-
ynomial Chaos Expansion (PCE) was applied to analyze random fields and the stochastic 
results were compared to experimental data. Le Maître et al. (2002, 2005) investigated the 
thermo-fluid flow in the DHC by solving low-Mach-number equations in both Boussinesq 
and non-Boussinesq limits. They studied uncertainties in the mean velocity field caused 
by the uncertain cold wall temperature using PCE. In Le Maître et al. (2004), the use of 
PCE was employed to examine the effects of uncertainty in the temperature of a heated 
bottom wall on Rayleigh–Bénard convection (RBC). In the field of CFD for aerospace 
engineering, Huan et al. (2019) utilized Karhunen-Loève Expansion (KLE) to investigate 
uncertain spatially dependent fields. The objective of this research was to contribute to the 
development of scramjet engines, with a focus on ensuring efficient and stable propulsion 
during hypersonic flight conditions. An advanced UQ methodology, which involves the 
combination of PCE and KLE, was applied for the analysis of uncertainties of a turbu-
lent round jet by Jivani et al. (2021). Furthermore, different methods have been presented 
in literature to facilitate stochastic modeling of intricate random fields or stochastic pro-
cesses through the change of variables and realignment techniques. Liao and Zhang (2016) 
applied a change of variables to approximate time-dependent 1-D and 2-D solute transport 
problems. First, stochastic models for time were built as a function of the response quan-
tity. The inverse transform of model samples yielded the response as a function of time. 
Giraldi et al. (2017) modeled the sea surface anomaly, which takes place after an earth-
quake. The arrival time of the wave anomaly was approximated with PCE and the time-
dependent wave height evolution was modeled with a second PCE model whose start time 
corresponds to the arrival time. Subsequently, both models were combined for stochas-
tic predictions. Colombo et al. (2018) utilized two-step surrogate models to approximate 
porosity in multi-layered sedimentary basins as a function of depth. They applied a change 
of the coordinate system to align discontinuities of the target function and transformed it 
back via piecewise linear mapping. Bonnaire et al. (2021) employed linear time scaling to 
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phase and then approximate oscillatory responses in the Kármán vortex street problem. 
Subsequently, inverse time scaling is used to restore the original oscillatory response from 
model predictions. To further increase the efficiency of available modeling approaches, 
one promising metamodeling approach was developed by Yue et al. (2021) and involves 
the approximation of a response function with PCE–HDMR (Polynomial Chaos Expan-
sion–High-Dimensional Model Representation). The methodology has been successfully 
tested with functions in analytic form and several engineering examples.

The present work aims for the description of stochastic processes with accurate and 
efficient HDMR models that can represent stochastic results effectively while minimiz-
ing the number of required computations. Therefore, the PCE–HDMR approach, which 
combines Cut-HDMR with PCE, is adopted and applied to an intricate dynamic CFD 
system in conjunction with complementary modeling strategies for the first time and 
continues the work of Wenig et  al. (2021a, b, 2022, 2023) in the field of uncertainty 
quantification for buoyancy-driven mixing processes between two miscible fluids. In 
Wenig et al. (2021a), preliminary work including a mesh convergence study, global sen-
sitivity analysis and UQ of scalar integral quantities, which provide a plain description 
of the mixing process, are presented. Stochastic models for the scalar integral quanti-
ties from different CFD models with different fidelities such as URANS, LES and DNS 
were combined through multifidelity modeling in Wenig et al. (2021b). Subsequently, in 
Wenig et al. (2023) stochastic modeling was extended to the approximation of random 
fields and the two-step model approach called Stochastic Model Composition (SMC) 
was proposed for the approximation of highly nonlinear time-dependent stochastic pro-
cesses. Using the SMC approach, stochastic models of the transient responses were built 
that describe their chronological progress as a function of the mixing state. This state-
dependent perspective aligned strongly non-linear phenomena and reduced the mode-
ling complexity. By means of an additional stochastic model, which describes the rela-
tionship between the mixing state and time, time-dependent model realizations could be 
derived. The basic idea behind the SMC approach is similar to realignment techniques 
pursued in Liao and Zhang (2016), Giraldi et al. (2017), Colombo et al. (2018) and Bon-
naire et al. (2021). Building on the methods already implemented, first results from sto-
chastic modeling with the PCE–HDMR approach were presented in Wenig et al. (2022).

The PCE–HDMR approach basically involves the construction of high-dimensional sto-
chastic models through a number of low-dimensional submodels, which are built by PCE. 
The obtained results provide a probabilistic representation of time-dependent response 
quantities that comprehensively describe the mixing process. Furthermore, the variance 
of responses was decomposed into fractions, which can be attributed to individual inputs. 
This was achieved through the determination of total-order Sobol indices. Error estimates 
were computed for the assessment of the stochastic model accuracy. The stochastic models 
are derived using PCE–HDMR and the Sparse Grid Method (SGM), which serves as a 
reference to evaluate the accuracy of PCE–HDMR. The UQ results show that PCE–HDMR 
provides accurate statistics of the modeled time-dependent stochastic processes and it is in 
good agreement with the SGM reference. Therefore, PCE–HDMR has the potential to be 
an efficient method for performing UQ analysis of large-scale applications, which is the 
long-term goal of this research.

The paper is organized as follows. Section  2 details the methods, which were used 
for the prediction and stochastic representation of the underlying flow phenomena. The 
obtained results are presented and discussed in Sect. 3. In Sect. 4, the results are summa-
rized and conclusions are drawn.
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2  Methods

Section 2.1 outlines the mathematical models and numerical methods used to predict the 
fluid flow dynamics. A comprehensive description of the UQ techniques is detailed in 
Sect. 2.2.

2.1  Computational Fluid Dynamics

The governing equations are presented in Sect. 2.1.1. Subsequently, Sect. 2.1.2 details the 
case setup and the definition of uncertainties, while Sect. 2.1.3 provides information on the 
numerical framework and the discretization technique.

2.1.1  Governing Equations

The study at hand pertains to the analysis of a low Mach number flow involving two New-
tonian viscous fluids. The LES governing equations for continuity, momentum, energy, and 
species transport read as follows:

For the sake of simplicity, the LES filtering operations were omitted. u is the velocity vec-
tor field, � is the density field, p is the static pressure field, g = (0, g, 0) is the gravitational 
acceleration vector, h is the enthalpy, K =

1

2
|u|2 is the kinetic energy of the system, Yi is the 

mass fraction of the ith species from the set of gas species indices given by N = {1, 2} , and 
the rate of strain tensor is defined as �(u) = 1

2

(
∇u + (∇u)T

)
 . SD accounts for the enthalpy 

transport due to diffusive mass transport and the associated correction of the heat conduc-
tion (Wenig et al. 2023). The effective dynamic viscosity �eff  is the sum of the molecular 
and subgrid-scale viscosity. h is the sum of the internal energy per unit mass e and the kin-
ematic pressure h = e +

p

�
 . According to the gradient flux approach, the effective thermal 

diffusivity results from �eff =
�

�⋅Pr
+

�sgs

Prt
 with the kinematic subgrid-scale viscosity �sgs and 

the turbulent Prandtl number Prt = 0.85 . The effective molecular diffusivity results from 
Deff = D +

�sgs

Sct
 with the turbulent Schmidt number Sct = 0.85 . The molecular diffusivity D 

is assumed to be constant. Mixture properties Φm are computed from the individual species 
properties Φi and species mass fractions Yi.

2.1.2  Case Setup and Uncertainties

The investigations are conducted using the DHC with aspect ratio 4, which is filled with air 
and 40 vol% of helium in the upper third, as shown in Fig. 1. The DHC is characterized by 
a hot left wall and a cold right wall. The resulting temperature difference between both 

(1)

��

�t
+ ∇ ⋅ (�u) = 0,

��u

�t
+ ∇ ⋅ (�uu) = −∇p + �g + ∇ ⋅

(
2�eff �(u)

)
− ∇

(
2

3
�eff (∇ ⋅ u)

)
,

��h

�t
+

��K

�t
+ ∇ ⋅ (�uh) + ∇ ⋅ (�uK) −

�p

�t
= ∇ ⋅

(
��eff (∇h)

)
+ �u ⋅ g + SD,

��Yi

�t
+ ∇ ⋅

(
�uYi

)
= ∇ ⋅

(
�Deff

(
∇Yi

))
.
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walls generates a natural convection flow within the cavity. The geometrical dimensions of 
the DHC are the height H, width W, and depth D. The height-to-width aspect ratio and the 
width-to-depth aspect ratio are �HW = H∕W = 4 and �WD = W∕D = 1 , respectively. The 
Prandtl numbers Pr = 0.71 and Pr = 0.66 used correspond to air and helium, respectively. 
The material properties of air are used to define the Rayleigh number 
Ra =

g�ΔTH3�

��
= 2 × 109 . The non-slip boundary condition is imposed on the velocity at 

the four enclosing walls. The cavity is subject to a temperature difference ΔT = Tl − Tr . 
The nominal value of the wall temperature difference is ΔT∗ = 21.431K . Thermal radia-
tion is neglected. The third spatial dimension is taken into account due to the three-dimen-
sional character of turbulent flow. Hence, the flow field is assumed to be periodic in the 
z-direction. For the mass fraction, a zero-gradient at the enclosing walls is defined: (
∇Y ⋅ n⃗

)|||𝜕Ω = 0 , where n⃗ denotes the wall-normal unit vector. A zero gradient is defined 
for the kinematic subgrid-scale viscosity �sgs and the subgrid-scale thermal diffusivity �sgs : (
∇𝜈sgs ⋅ n⃗

)|||𝜕Ω = 0 , 
(
∇𝛼sgs ⋅ n⃗

)|||𝜕Ω = 0 . The Wall-Adapting Local Eddy-viscosity (WALE) 
model with Cw = 0.5 is applied to modelling viscous subgrid-scale effects (Nicoud and 
Ducros 1999). The initial conditions of the system are the temperature of 
T0 = T = 298.15K and pressure of p0 = 1 bar . The molecular diffusion coefficient is 
assumed to be constant and is derived using Fuller’s method (Kabelac et al. 2013), with a 
nominal value of D∗ = 6.904 × 10−5 m2∕s . The other properties of the system are calcu-
lated using the ideal gas law at T = 298.15K.

Fig. 1  Case setup of the DHC with superimposed mixing process: a Schematic sketch of the Differentially 
Heated Cavity with illustration of uncertain parameters, such as the wall temperature difference, the wall-
tangential temperature gradient, the top and bottom wall temperature and the initial helium stratification, b 
3D representation of the DHC in full section view
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The aim of the study was to investigate the propagation of uncertainties in the initial 
and boundary conditions, as well as material properties. Several uncertain input parameters 
were defined and are treated as random variables. These were chosen to be representa-
tive of possible uncertainties in the application case (Freitag and Schmidt 2022) for which 
the UQ methods are developed. Figure 1a provides an illustration of these uncertain input 
parameters. The thermal boundary conditions are subject to uncertainties that include the 
temperature difference between the left and right wall ΔT  , the vertical temperature gradi-
ent at the left and right wall defined by Θl,r and the temperatures at the top and bottom wall 
of the cavity, which are determined by the uncertain parameter Θb,t . Additionally, uncer-
tainty is also imposed on the initial distribution of the helium mole fraction X through the 
uncertain mole fraction difference ΔX . The molecular diffusion coefficient D is also con-
sidered as an uncertain parameter.

The average temperature at the left and right wall is given by

 The average temperature of the boundary T  is kept constant. The linear profile of the tem-
perature at the left and right wall T|l∕r is defined with the vertical coordinate � = y − H∕2 
according to the expression

where Θl,r indicates the relative temperature change due to the temperature gradient over 
the entire cavity height with respect to the characteristic temperature difference ΔT  . The 
bottom and top wall temperature is specified by the expression

where Θb,t is the relative temperature at the bottom and top wall with respect to the char-
acteristic temperature difference ΔT  . To maintain consistency in the temperature field, a 
parabolic profile towards the corners and edges is applied, see (Wenig et al. 2021a). The 
initial helium stratification is changed by variation of the mole fraction difference ΔX with 
the coordinate � = y − 2H∕3:

 where X∗ = 0.40 is the constant nominal mole fraction of the helium layer.
Model distributions for the uncertain input variables Qi with corresponding reali-

zations qi were defined and are listed in Table  1. N
(
�, �2

)
 and LN

(
�, �2

)
 denote a 

(2)Tl∕r = T ±
ΔT

2
.

(3)T|l∕r(�) =
Θl,r ΔT

H
� + Tl∕r ,

(4)Tb∕t = Tr∕l ± Θb,t ΔT ,

(5)X(�) =
2ΔX

H − h
� + (X∗ − ΔX) ,

Table 1  Definition of mutually 
independent random input 
variables

qi Probability distribution for Qi

ΔT N
(
0, [0.1ΔT∗]2

)
Θl,r LN

(
0.1, 0.12

)
Θb,t LN

(
0.2, 0.12

)
ΔX TN

(
0, [0.2X∗]2, 0,X∗

)
D N

(
D∗, [0.1D∗]2

)
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normal distribution and a log-normal distribution with expectation � and variance �2 . 
TN

(
�, �2, a, b

)
 denotes a truncated normal distribution with a and b as the lower and upper 

bounds. Further information about the case setup and regarding the definition of uncertain 
parameters can be found in Wenig et al. (2023).

2.1.3  Framework and Discretization

The nonlinear set of governing equations was solved in a finite-volume framework using the 
open-source C++ toolbox OpenFOAM v.2006 (Weller et al. 1998; OpenFOAM documen-
tation v2006 2019). The pressure–velocity coupling was addressed by using the PIMPLE 
algorithm. It is ensured that the normalized residuals of the pressure–velocity coupling fall 
below the value 10−4 , while for the matrix solvers below 10−6 . The convective momentum flux 
was evaluated using the second-order linear upwind scheme, while the remaining convective 
and diffusive fluxes were evaluated using the limited linear scheme. The convective flux of 
the helium mass fraction was discretized using the limited linear scheme, which is bounded 
between 0 and 1. Temporal advancement was achieved by blending 10% implicit Euler and 
90% Crank–Nicolson schemes. Noting that Uncertainty Quantification requires a large num-
ber of simulation runs to be performed, the numerical schemes were deliberately chosen as 
a compromise between accuracy and robustness. Furthermore, it has been ensured that the 
CFL number is always below the value of 0.5. A sufficiently fine spatial grid resolution was 
used to resolve most of the turbulent fluctuations for LES. The mesh refinement strategy used 
in Wenig et  al. (2021a) was adopted to ensure appropriate resolution of the wall-boundary 
layer. The dimensionless horizontal and vertical wall normal distances of the wall adjacent 
cell centroids were defined at y+ ≤ 1 . The mesh was refined linearly from the central planes of 
the cavity towards the walls with constant expansion factors of 1.156 and 1.020 for the hori-
zontal and vertical directions, respectively. The number of cells is 44 in the horizontal direc-
tion, 220 in the vertical direction, and 34 in the depth direction. The maximum dimensionless 
wall tangential cell sizes in streamwise direction were set with Δx+ ≈ 30 . A sufficient length 
in the periodic direction �WD = W∕D = 1 was applied to ensure that turbulence fluctuations 
are uncorrelated at a separation of one half-period (Trias et al. 2007). The mesh in periodic 
direction was uniformly distributed with Δz+ ≈ 20 . A detailed description of the mesh with a 
supplementary grid convergence study can be found in Wenig et al. (2021a).

2.2  Uncertainty Quantification

The construction of stochastic models via Stochastic Spectral Methods is presented in 
Sect.  2.2.1. The PCE–HDMR methodology is introduced in Sect.  2.2.2. Section  2.2.3 
provides an explanation of the Stochastic Model Composition technique. Furthermore, 
Sects. 2.2.4 and 2.2.5 provide principles for variance-based decomposition and error esti-
mation, respectively.

2.2.1  Stochastic Spectral Methods

In this section, PCEs and KLEs are introduced as two applied representatives of Stochastic 
Spectral Methods. The use of PCE (Wiener 1938; Ghanem and Spanos 1991) was moti-
vated by its capability to approximate stochastic results in an computationally efficient 
manner due to high convergence rates as the number of simulation runs increases. Let Q be 
random input variables Q ∶ Ω → � ⊂ ℝ

n that map events � ∈ Ω from sample space Ω to 
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realizations q ∈ � . In the employment of PCE, random response functions R(�) = R(Q) 
are approximated through a series of suitable multidimensional orthogonal polynomials 
Ψ� (Q) with corresponding expansion coefficients �� . The expression for the truncated 
PCE is given in the following:

where � =
(
�1,⋯ , �n

)
 with �i ≥ 0 is a n-dimensional multi-index from the finite index 

set B n,d = {� ∈ ℕ
n ∶ |�| ≤ d} , which specifies the univariate polynomial degree tuples 

of each polynomial basis element. Therefore, Ψ�i
 denote orthogonal polynomials of order 

�i , which yield Ψ� =
∏n

i=1
Ψ�i

�
Qi

�
 . For computational purposes, the PCE is truncated by 

retaining a total polynomial degree of ��� = ∑n

i=1
�i ≤ d . This truncation leads to a total 

number of expansion terms P. Thus, PCE can also be formulated with a term-based index 
p ∈ [1,P] , which indicates the p-th multi-index � (p) in the polynomial basis B n,d:

The orthogonal polynomials were numerically generated by using the Gramm–Schmidt 
(Witteveen and Bijl 2006) approach. The expansion coefficients ��(p) were estimated by 
using the Smolyak sparse grid method (Smolyak 1963; Xiu 2007; Constantine et al. 2012) 
for the reference and tensor quadrature for the PCE–HDMR model. The sparse grid quad-
rature rule is defined by

where U(1)

li
 denotes one-dimensional quadrature operators with the level li ∈ ℕ+ and l 

denotes the multi-index l =
(
l1,… , ln

)
∈ ℕ

n
+
 . The dimension independent maximum 

sparse grid level m controls the number of function evaluations and the associated accuracy 
of the PCE. Regarding the reference model, an isotropic sparse grid with level 2 and 
Gaussian quadrature rules are applied. Further details are provided in previous work 
(Wenig et al. 2023). The PCE coefficients for the PCE–HDMR approach were computed 
by using discrete projection through Gaussian quadrature with quadrature order of 5. The 
Gauss points and weights are computed by the Golub–Welsch (Golub and Welsch 1969) 
tridiagonal eigensolution. The open-source software Dakota 6.10 (Adams et al. 2019) was 
used as framework for the determination of the PCEs.

The PCE approach was further complemented by the application of KLE (Karhunen 
1947; Loève 1978). For this purpose, a stochastic model of random fields or stochastic 
processes was constructed through a finite linear combination of orthogonal determin-
istic basis functions, or principal components, multiplied by uncorrelated random vari-
ables. With this approach, the variance in the random response data is captured through 
its most important modes of variability. Let R(x,�) be a random field (RF), which is 
dependent on the deterministic field variable x ∈ X  and random event � ∈ Ω , where X  
denotes the field domain and Ω is the sample space. The RF can be divided into its mean 
�R(x) and centered field R0(x,�) in the following way:

(6)R(�) ≈ RB(Q) =
∑

�∈B n,d

��Ψ� (Q) ,

(7)R(�) ≈ RP(Q) =

P∑
p=1

��(p)Ψ�(p) (Q) .

(8)A(m, n) =
∑

m+1≤|l|≤m+n
(−1)m+n−|l|

(
n − 1

m + n − |l|
)
⋅

(
U
(1)

l1
⊗⋯⊗ U

(1)

ln

)
,
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Subsequently, a truncated KLE is applied to approximate the centered field R0(x,�)

where � = �k(�) are mutually uncorrelated random variables with zero mean and unit vari-
ance. The scalars �k and field-dependent deterministic functions �k(x) are, respectively, the 
eigenvalues and orthogonal eigenfunctions to the homogeneous Fredholm equation of sec-
ond kind. For solving the integral within the Fredholm equation, the discrete Karhunen-
Loève method (Schenk and Schuëller 2005), also known as Principal Component Analysis 
(PCA), was employed along with a uniform discretization of the field domain with B 
points. An estimation of the expectation of the random field �̂�R(x) was determined by uti-
lizing the underlying quadrature rule according to the PCE coefficient estimation method. 
Due to the sparsity of simulation results in the PCE–HDMR approach, the covariance 
matrix was constructed in an analogous manner through the estimation of individual 
entries of the covariance matrix �

[
R0(xa,Q)R0(xb,Q)

]
 based on the underlying quadrature 

rule. The covariance matrix for the reference model was constructed by taking the sample 
covariance (Wenig et al. 2023). The truncation of the KLE was accomplished through a 
practical rule based on the eigenvalue decay rate, i.e. terms with eigenvalues �k , which 
decayed to some fraction (e.g. 10% ) of the largest eigenvalue �1 , are omitted. In the present 
work, the decay rate �K+1∕�1 ≤ 0.02 was applied. The mutually uncorrelated random vari-
ables �k were approximated with PCE (Huan et al. 2019; Jivani et al. 2021), to establish the 
relationship between �k and Qi : �Pk (�) =

∑P

p=1
�k,�(p)Ψ�(p) (Q) , where �k,�(p) are the PCE coef-

ficients for the approximation of �k . This eventually yields a response approximation 
RP,K(x,�) based on PCE in conjunction with KLE with field dependent expansion coeffi-
cients �K

�(p)
(x):

where �K

0,�(p)
(x) are the field-dependent PCE coefficients of the centered field. The estima-

tion of the mean �̂�R(x) can be added to the first expansion coefficients �K

0,�(1)
(x) and this 

yields the coefficients �K

�(p)
(x) for the full random field approximation, which is based on 

both PCE and KLE.
The KLE provides a representation of a random field that minimizes the mean squared 

error (MSE) between the original field and its approximation using a given number of 
terms. This property might facilitate an efficient construction of the random field approxi-
mation while preserving its essential characteristics. KLE also incorporates covariances 
that can enhance the accuracy of physical model predictions beyond those obtained by 
directly applying PCE to responses at individual points in time. Furthermore, the long-time 

(9)R(x,�) = �R(x) +R0(x,�) .

(10)R0(x,�) ≈ RK
0
(x, �) =

K�
k=1

√
�k�k(x)�k ,

(11)

RP,K(x,𝜔) = �̂�R(x) +

P�
p=1

�
K�
k=1

√
𝜆k𝜑k(x)𝛾k,�(p)

�
Ψ�(p) (Q)

= �̂�R(x) +

P�
p=1

�
𝛼K

0,�(p) (x)
�
Ψ�(p) (Q)

=

P�
p=1

�
𝛼K

�(p) (x)
�
Ψ�(p) (Q) ,
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integration problem (Gerritsma et  al. 2010) is mitigated, since KLE describes stochastic 
processes coherently with its modes of variability, which can be attributed to the variability 
of the random input parameters via PCE approximation of the scalar random variables �k . 
In this way, the approximation of highly dynamic stochastic processes with a reasonable 
number of PCE terms can be facilitated.

2.2.2  PCE–HDMR

The PCE–HDMR approach is explained in more detail in this Section. Response functions 
R(x,Q) can be represented by a unique HDMR or Sobol decomposition, which in practice 
is commonly truncated after the second-order term (Sobol’ 1993):

Cut-HDMR or anchored HDMR proposes the determination of the series component func-
tions of the HDMR through the evaluation of the response function along cut lines, planes, 
and hyperplanes through a reference point q∗ . The evaluation up to the second order term is 
conducted according to the following equations:

where q∗
∼i

 indicates that all input parameters except qi are at the reference point, and q∗
∼ij

 
analogously indicates that all input parameters except qi and qj are at the reference point. Qi 
or Qj denote the random input variables under current consideration. The superposition of 
the individual terms of the Cut-HDMR in Eq. 13 yields an approximation of the response 
R(x,Q) . Figure 2 illustrates the Cut-HDMR approach through geometric interpretation of 
the first Sobol decomposition terms of a two-dimensional response function. The first term 
refers to the reference point result, which is depicted in Fig. 2a. The univariate effects by 
individual parameters are considered in the first-order terms. Corresponding functions are 

(12)R(x,Q) ≈ R0(x) +

n∑
i=1

Ri

(
x,Qi

)
+

∑
1≤i<j≤n

Rij

(
x,Qi,Qj

)
.

(13)

R0(x) = R(x, q∗) ,

Ri

(
x,Qi

)
= R

(
x,Qi , q

∗
∼i

)
− R0(x) ,

Rij

(
x,Qi,Qj

)
= R

(
x,Qi ,Qj , q

∗
∼ij

)
− Ri

(
x,Qi

)
− Rj

(
x,Qj

)
− R0(x) ,

Fig. 2  Schematic sketch of the first three Sobol decomposition terms of a two-dimensional function: a Ref-
erence point result, b univariate result functions, and c bivariate result function
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schematically shown in Fig.  2b. The second-order term includes bivariate or interaction 
effects with regard to the response. Figure  2c schematically shows the two-dimensional 
plane of this term. When using PCE–HDMR, metamodels of these component functions 
within the Cut-HDMR are simultaneously approximated through PCEs (Yue et al. 2021): 

The summation of these terms yields the PCE–HDMR approximation of the response:

In the process, a suitable reference point q∗ has to be selected. Its choice is crucial and it 
was defined at the center point of sparse grid quadrature according to recommendations in 
Gao and Hesthaven (2010). Prior analysis by means of total-order Sobol indices revealed 
that the uncertain input parameters show negligible interaction behavior with respect to 
considered random responses in  Wenig et  al. (2023). For this reason, the second-order 
terms in Eq. (15) were omitted and solely univariate effects were taken into account. The 
PCE approximations were computed according to Sect.  2.2.1. Gaussian quadrature with 
quadrature order of 5 was applied for discrete projection and responses are approximated 
by polynomials of order d = 4.

PCE–HDMR enables the gradual construction of high-dimensional stochastic mod-
els by combining multiple low-dimensional models and can thus increase computational 
efficiency.

2.2.3  Stochastic Model Composition

The field of CFD often involves the prediction of transient processes that are characterized 
by highly dynamic behavior. As a result, the stochastic approximation of random responses 
in the presence of uncertainties might be impeded since the occurrence of nonlinear effects 
can exhibit temporal variability due to its dependence on the random input variables. In 
the mixing process under consideration, such nonlinear temporal effects occur and their 
practicable approximation can be facilitated by realignment and using an intermediate 
variable. Therefore, Stochastic Model Composition (SMC), or Random Field Composition 
(RFC), was introduced in Wenig et al. (2023), as a novel approach for modeling the tran-
sient behavior of time-dependent stochastic processes with function composition. Similar 
realignment techniques, which utilize linear scaling or transform, are reported in literature 
(Liao and Zhang 2016; Giraldi et  al. 2017; Colombo et  al. 2018; Bonnaire et  al. 2021). 
In the present work, the SMC methodology is employed to perform UQ of the buoyancy-
induced mixing process. The realignment technique is distinguished through the concept of 
introducing an additional intermediate field variable with which the chronological process 
of transient responses can be represented and nonlinear effects can be aligned to similar 
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locations with respect to the intermediate variable. This intermediate variable should accu-
rately capture and represent the essential characteristics of the underlying physical process 
and thereby provide a measure to which the stochastic processes at hand exhibit similar 
transient behavior. Therefore, the realignment procedure, which is determined by the inter-
mediate variable, is derived based on physical principles. For instance, entropy could be 
a suitable measure for realignment in the context of a thermodynamic process as entropy 
increases monotonically and characterizes the progress of a process. In the context of a 
chemical process, for example, random fields or stochastic processes could be realigned by 
means of the reaction progress variable, which takes on values from 0 to 1. When examin-
ing the mixing processes in this work, the primary focus is on the temporal mixing behav-
ior. Therefore, for the description of the progress of desired responses, it is beneficial to 
choose an intermediate variable indicating the mixing state, which starts from an inhomo-
geneous state and ends with a fully mixed homogeneous state. The present study accom-
plishes the description of the mixing state through the normalized mixture uniformity ΣX:

where X is the helium mole fraction, X0 is the initial helium mole fraction, X̄ is the helium 
mole fraction of the homogeneous mixture and V is the total fluid volume. ΣX is a continuous 
and monotonic function, which starts with a value of ΣX = 1 , indicating the inhomogeneous 
state and monotonically decreases to the value ΣX = 0 , characterizing the homogeneous state 
of the mixture. These properties allows to represent the responses as functions of the mixing 
state G(z,Q) . Given that the considered mixing processes exhibit similar transient behavior 
with respect to the mixing state, this facilitates a reduction in the complexity of the response 
function. To establish the relationship between the mixing state with physical time, an addi-
tional stochastic model Z(t,Q) is constructed, which represents the mixing state as a func-
tion of time. Subsequently, the state-dependent stochastic models of responses are combined 
with the time-dependent stochastic model of the mixing state through function composition 
G(Z(t,Q),Q) , which is the mathematical concept behind the SMC methodology. Figure 3a 
illustrates this operation with a domain diagram. The function Z maps times to different states, 
and subsequently, the function G maps each of these states to their respective responses. This 
allows to establish the relationship sequentially between time and a response quantity. In prac-
tice, tabular data of realizations of quantities like time t, state z and responses r is determined 
from stochastic models, as shown in Fig. 3b. Finally, the relationship between a response and 
time can be derived by calculation of the time instants for the corresponding states through 
linear interpolation. The algorithm can be summarized as follows: 

1. Run simulations for stochastic model construction and collect data of responses R, the 
state variable z and time t;

2. Compute state-dependent stochastic models of the response G(z,Q) and a stochastic 
model Z(t,Q) , which describes the relationship between the state variable z and time t;

3. Derive model realizations for the state-dependent response G(z, q) and for the state-time 
relationship Z(t,q) , which are respectively based on identical input parameter samples;

(16)z = ΣX =
𝜎X
𝜎X0

=

√
V−1 ∫

V

(
X − X̄

)2
dV

√
V−1 ∫

V

(
X0 − X̄

)2
dV

,
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4. Derive time-dependent realizations by calculating the time instants, which correspond 
to the respective states, via interpolation and allocation of the time instants to the indi-
vidual response values.

In this way, SMC enables the approximation of intricate stochastic processes R(t,�) by rea-
lignment of nonlinear temporal effects and by partitioning the stochasticity into two stochastic 
models.

2.2.4  Variance‑Based decomposition

Through the determination of variance-based measures of sensitivity (Sobol 2001), it becomes 
possible to identify the sources of response uncertainties and attribute them to uncertainties in 
input parameters. In this approach, the variance is split into partial variances that stem from 
individual parameters or from their interaction behavior:

From this decomposition, variance-based measures of sensitivity can be inferred. In the 
present work total-order Sobol indices STQi

 are considered, which characterize the overall 
variance caused by an individual parameter through its univariate effect and interaction 
with other parameters:

(17)�ar (R) =

n∑
i=1

VQi
+

n∑
i<j

VQiQj
+⋯ + VQiQj…Qn

.

Fig. 3  Illustration of the SMC method: a Domain diagram and b practical implementation of the methodol-
ogy with tabulated data
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A Monte Carlo estimator was used for the derivation of the total-order indices (Saltelli 
et al. 2010):

where A and B are two independent sample matrices. 
[
Ai

B

]
 contains the elements for the ith 

input variable from the second matrix B.
The variance-based decomposition enables a thorough evaluation of the stochastic pro-

cesses by identifying the most significant input parameters that contribute to the response 
variance. In this way, it is feasible to attain informed decision-making and interpretation of 
results is facilitated.

2.2.5  Model Error Estimation

The assessment of the accuracy of stochastic models and UQ results is accomplished 
through the estimation of the root-mean-square error (RMSE), which is equivalent to 
the square root of the generalization error (Vapnik 2000; Blatman and Sudret 2011). The 
RMSE is defined as:

where R̂(t,Q) denotes the stochastic model, which approximates the stochastic process of 
the response R(t,Q) . The RMSE is the square root of the expectation of the squared differ-
ences between the predicted and actual process. In this way, the accuracy of the stochastic 
model predictions can be assessed with respect to the underlying computational model. In 
the present work, the RMSE was determined using the following estimator:

where R̂
(
t, q(i)

)
 and R

(
t, q(i)

)
 are respectively the realization transients predicted by the sto-

chastic model and realization transients computed by the CFD simulation, which were used 
for stochastic model construction. For the estimation of the RMSE with regard to the SGM 
and PCE–HDMR approach, the realization transients from the simulation runs for the con-
struction of the SGM reference model are taken into account. This ensures comparability 
between both approaches.

As global measure, the temporal mean RMSE, denoted by ⟨RMSE⟩ , is determined 
through the square root of the integral mean of the mean square error MSE = (RMSE)2 
over the whole time span of the model Δt = t end − t start : It is determined through the 
expression
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where the integral is evaluated through the trapezoidal rule.
The aforementioned error metrics facilitate the assessment of the accuracy of the sto-

chastic models and provide a measure for identifying potential model improvements.

3  Results and Discussion

In Sect.  3.1, the physical phenomenology of the mixing process within the DHC is 
explained. Subsequently, the analyzed Quantities of Interest are introduced in Sect.  3.2, 
which is followed by the presentation and discussion of results for time-dependent stochas-
tic processes in Sect. 3.3.

3.1  Phenomenology

This section presents the physical phenomena that occur during the mixing process within 
the DHC, with the aim of facilitating result interpretation. The mixing process comprises 
multiple consecutive phases. It starts with a quiescent stratification of helium and air, as 
shown by the initial fluid property fields in Fig. 4. A buoyancy-driven mixing process is 
initiated due to the temperature difference between the left and right walls, which results in 
the establishment of two distinct circulating natural convection flows in the upper helium-
rich and lower air-rich regions. During this stage, mixing occurs mainly by diffusive mass 
transport, which is evident from the fluid property fields in Fig. 5. Diffusive mixing per-
sists until the density difference between the upper and lower regions of the DHC becomes 
small enough for buoyancy forces to erode the remaining helium layer, leading to complete 

(22)⟨RMSE⟩ =
⎛
⎜⎜⎝
Δt−1

tend

∫
tstart

MSE dt

⎞
⎟⎟⎠

1∕2

,

Fig. 4  3D full section view of DHC with fluid property fields for the initial state
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mixing of air and helium. The fluid property fields during the convective erosion are shown 
in Fig. 6.

Dynamic transition stages like the convective erosion show significant impact on sto-
chastic results and pose considerable challenges in terms of their approximation using sto-
chastic models. This is caused by the fact that these dynamic transitions occur at different 
points in time depending on the random input variables, inducing strong non-linearities in 
the model to be approximated. However, with the methods described in the previous sec-
tions, a reliable prediction of such stochastic processes is accomplished.

3.2  Quantities of Interest

For the UQ study, relevant result quantities, which characterize the buoyancy-driven mix-
ing process, need to be analyzed. These result quantities are commonly referred to as 
Quantities of Interest (QoI) in the field of uncertainty quantification. In natural convec-
tion flows, convective heat transfer plays a crucial role. To assess this phenomenon, the 
spatially averaged Nusselt number Nul over the left wall is considered. This dimensionless 

Fig. 5  3D full section view of 
DHC with fluid property fields 
during the diffusive phase

Fig. 6  3D full section view of 
DHC with fluid property fields 
during the erosion phase
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quantity provides valuable information about convective heat transfer and is determined 
according to the following expression

where n⃗ denotes the wall-normal unit vector and Aw denotes the face area of the left wall. 
Furthermore, the global kinetic energy serves as an indicator of the convection mechanisms 
that are taking place. The corresponding quantity Ek is the ratio of the global kinetic energy 
divided by the reference kinetic energy �2Ra∕H2 , which is defined with material properties 
of air. The definition of Ek reads as follows:

M denotes the total mass in the fluid domain and dm denotes the mass in a cell. Natu-
ral convection occurs inside the cavity, resulting in the gradual mixing of air and helium 
through both diffusion and convection until an homogeneous mixture forms. The temporal 
progress of the mixing process is measured by a quantity called the mixture uniformity 
�X . This quantity represents the volume-weighted standard deviation of the mole fraction 
X from the mole fraction of the homogeneous state X̄ over the entire fluid domain. It is 
defined by the expression

The mixing process starts from the inhomogeneous state characterized by the tempo-
ral maximum values for �X . When the mixing proceeds, the normalized mixture uni-
formity finally takes on the value �X = 0 , which describes the homogeneous state. The 
response variables described above are time-dependent stochastic processes and are con-
sidered in the next section over dimensionless time represented by the Fourier number 
Fo = D∗ t ∕H2 , where D∗ is the nominal molecular diffusion coefficient.

3.3  Time‑Dependent Stochastic Processes

The state-dependent stochastic models of the aforementioned random responses together 
with the stochastic model, that describes the relationship between the mixing state and 
time, were created using PCE in conjunction with KLE based on the PCE–HDMR and 
SGM methods. Subsequently, time-dependent model realizations were determined from 
the two-step models using SMC and numerous statistics were computed. Results, which 
were derived from PCE–HDMR and SGM, are depicted in Figs. 7, 8 and 9. As a reference 
for the PCE–HDMR method, results from SGM are employed. Comprehensive stochastic 
representations of the mixture uniformity �X are given in Fig.  7. The sub figures at the 
top show the results obtained from the PCE–HDMR approach, while the reference results 
derived by SGM are analogously presented at the bottom. When considering the respective 
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results for PCE–HDMR and SGM, the left subplots show the probability density functions 
(PDFs) fR(R) at different points in time. In addition, discrete levels of the cumulative dis-
tribution functions (CDFs) FR(R) are indicated with colors according to a colormap. The 
PDFs were estimated with a kernel density estimator based on a normal kernel function 

Fig. 7  Probabilistic characterization of �X derived from PCE–HDMR and SGM with PDFs fR(R) , discrete 
levels of the CDFs FR(R) , expectation � , standard deviation � , quantiles Q, RMSE estimation and stacked 
total-order Sobol indices ST
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(The MathWorks Inc 2019a; Bowman and Azzalini 1997). The quantiles corresponding 
to the discrete levels of the CDFs were computed by interpolating realization values from 
the sorted sample data (The MathWorks Inc 2019b; Langford 2006). The sample size uti-
lized for the estimations was Ns = 105 . Furthermore, the top right subplots shows further 

Fig. 8  Probabilistic characterization of Nul derived from PCE–HDMR and SGM with PDFs fR(R) , discrete 
levels of the CDFs FR(R) , expectation � , standard deviation � , quantiles Q, RMSE estimation and stacked 
total-order Sobol indices ST
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statistics like expectation � , standard deviation � , median Q0.50 along with quantiles Q, 
which are located at the discrete color transitions according to the values of FR(R) . The 
center right subplot shows the error estimates of the underlying stochastic model with 
respect to the simulation model by means of the RMSE . Furthermore, stacked total-order 

Fig. 9  Probabilistic characterization of Ek derived from PCE–HDMR and SGM with PDFs fR(R) , discrete 
levels of the CDFs FR(R) , expectation � , standard deviation � , quantiles Q, RMSE estimation and stacked 
total-order Sobol indices ST
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Sobol indices are shown at the bottom right subplot and enable the assignment of result 
uncertainties to uncertain input parameters. The values for ST were computed according to 
Eq. 19 with a sample size of 106.

From the left and top right plot one can see that the mixture uniformity �X starts with 
high values for �X , which represent the initial inhomogeneous state and ends with �X = 0 , 
which represents the homogeneous state. At the beginning of the mixing process a dis-
tribution of �X is recognizable, which aligns with the definition of the uncertain initial 
distribution of the helium. This initial distribution turns into a normal distribution, which 
gradually widens during the mixing process. In this phase the mixing is mostly driven by 
diffusive mass transport. At a certain point in time, the remaining helium layer is eroded 
by the establishment of the circulation flow over the whole cavity height. This eventually 
leads to the homogeneous state of the mixture. Therefore, the probability accumulates 
around �X = 0 , which is indicated by high values for the PDFs fR(R) . In order to ensure 
the visibility of the initial distributions, the PDFs were truncated at fR(R) = 200 . Since 
�X reaches zero at different points in time, it is evident, that the duration of the mixing 
process is subject to uncertainty. This is due to the definition of uncertain input param-
eters that slow down or accelerate the mixing process. The comparison between the statisti-
cal results obtained from SGM and PCE–HDMR reveals that PCE–HDMR demonstrates 
a high level of accuracy in replicating the reference results achieved by SGM. Addition-
ally, PCE–HDMR achieves this level of precision while incurring a significantly reduced 
computational cost of 75%, since PCE–HDMR merely required 26 simulations, in con-
trast to 105 simulation runs necessitated by the SGM approach. The 105 simulations of 
the SGM approach are defined by the sparse grid topology of level m = 2 . The number 
of calculations for the PCE–HDMR approach originate from five simulations per random 
input variable and the calculation at the reference point. The efficiency of PCE–HDMR is 
also confirmed by the RMSE estimates, which are shown in the center right subplots. It 
exhibits low magnitudes for both models and indicates that the difference between the pre-
dictions of the stochastic models and the actual values of the simulation runs is relatively 
small. The stochastic models thus provide an accurate approximation of the result quantity 
and reliable statistical information can be derived from the individual models. The analy-
sis revealed that the error estimate of the PCE–HDMR approach is lower compared to the 
RMSE estimate from the SGM reference. This disparity can be attributed to the fact that 
the PCE–HDMR methodology in this work relies on the utilization of univariate Gaussian 
integration, which is known for its high precision and accuracy. In the stacked total-order 
Sobol indices subplot at the bottom right, the orange area indicates that at the beginning of 
the mixing process the variance is mostly caused by the initial structure of the helium strat-
ification, which changes due to the uncertain parameter ΔX . Subsequently, the variance of 
the mixing state measured by �X is mainly based on the uncertain temperature difference 
between the left and right wall ΔT  and the uncertain molecular diffusion coefficient D, 
which is indicated by the red and green areas, respectively. Consequently, these parameters 
have a decisive influence on the progress of the mixing process. 

Statistics and complementary results regarding the left wall Nusselt number Nul are 
depicted in Fig. 8. The results are also derived from the PCE–HDMR and SGM approach. 
In both cases, the left and top right plot indicates a stagnant phase of Nul at the begin-
ning of the mixing process, which is also characterized by a normal distribution. This is 
followed by a transient transition to the new quasi steady state, which takes place at dif-
ferent points in time and thus entails a larger uncertainty band for the values of Nul . This 
transition, which refers to the convective erosion of the remaining helium layer, is evident 
from the gradual decrease in probability at low Nul and the gradual increase at higher 
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Nul over time. After the transition, the dynamic system attains a new equilibrium state, 
which is characterized by a Gaussian distribution once again. Minor differences between 
PCE–HDMR and SGM can be observed in the region, where the transient transition to 
the quasi steady state occurs. In the remaining temporal domain both methods provide 
good agreement in the derived statistics. From the center right subplots one can see that 
the RMSE estimate takes on larger values at the beginning of the mixing process. These 
inaccuracies arise, because the initial transient processes proceed similar in terms of time 
and, consequently, the approximation is impeded by the state-dependent perspective of the 
SMC approach (Wenig et  al. 2023). After the initial process, the RMSE estimates indi-
cate negligible magnitudes. However, at the onset of the aforementioned transition process 
deviations between the model predictions and simulation runs are present, but the RMSE 
estimate is still reasonably low. The bottom right subplot, which depicts the stacked total-
order Sobol indices, shows that the uncertain temperature difference between the left and 
right wall ΔT  has major influence on Nul . Since transient effects, such as the convective 
erosion process during the transition stage, depend on the mixing progress and thus on 
time, the uncertain input parameter D, which significantly contributes to the progress of the 
mixing process next to ΔT  , leads to considerable proportion of the variance for Nul after 
the start of the erosion.

Results for the global kinetic energy Ek are given in Fig. 9. From the left and top right 
subplot, it can be seen that the statistics of the global kinetic energy indicate a narrow 
uncertainty band during the diffusive phase. The convective erosion of the remaining 
helium layer leads to the new equilibrium state. This transition stage takes place at differ-
ent points in time and is therefore accompanied by a wide uncertainty band. In analogy to 
Nul , the PDFs regarding Ek also show a gradual decrease in probability while they increase 
at higher values during transition. The statistics from PCE–HDMR and SGM show good 
agreement, whereby small differences in the outer quantiles can be discerned. Furthermore, 
the error estimates in the center right subplot show that the error exhibits larger magnitudes 
at the beginning, which is due to the state-dependent perspective of the SMC approach 
(Wenig et al. 2023). The diffusive phase, which is characterized by the narrow uncertainty 
band, is precisely predicted. During the transition stage, error peaks are still evident due 
to small inadequacies in the model prediction of the erosion time. Once again it becomes 
clear that the error estimate from PCE–HDMR provides smaller values than the SGM ref-
erence. The stacked total-order Sobol indices at the bottom right reveal that the tempera-
ture differences between the left and right wall ΔT  and the top and bottom wall tempera-
ture definition via Θb,t have significant impact on the variance of Ek . During the erosion 
phase, the diffusion coefficient D also shows a considerable effect.

Based on the findings, it is evident that the PCE–HDMR method can yield results that 
are comparable to those obtained from the SGM reference. Consequently, this methodol-
ogy serves as an additional foundation for the efficient construction of stochastic models in 
the context of uncertainty quantification.

4  Summary and Conclusion

For the implementation of UQ on technical scale applications in the field of CFD, effi-
cient methods are required. In the present work, a suitable method was qualified using a 
generic test case, which corresponds to the Differentially Heated Cavity. An initial strati-
fication with 40 vol% helium next to air was defined in the upper third of the enclosure. 
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As a result of natural convection, a buoyancy-driven mixing process occurs within the 
enclosure, which is aimed to be predicted by LES. The definition of uncertain input param-
eters within the CFD simulation leads to uncertainty in results or responses, which were 
approximated via Stochastic Spectral Methods in conjunction with PCE–HDMR and SGM. 
The responses include time-dependent stochastic processes of quantities, which charac-
terize the mixing behavior, heat transfer and convection mechanisms. The corresponding 
UQ results include a thorough probabilistic representation of these responses that compre-
hensively describe the mixing process. From the underlying stochastic models, total-order 
Sobol indices were computed, which allowed for the assignment of variance proportions of 
the responses to individual uncertain input parameters. In addition, supplementary RMSE 
error estimates were determined for the assessment of the respective model accuracy.

The stochastic model statistics and complementary results from PCE–HDMR and the 
SGM reference revealed very good agreement. Therefore, PCE–HDMR is proven a prom-
ising UQ-method for large-scale CFD applications, since it enables the construction of 
high-dimensional stochastic models through low-dimensional submodels and in this way 
allows for the investigation of a large number of random inputs. Moreover, the stochas-
tic model construction by means of PCE–HDMR is distinguished through its efficiency 
by taking advantage of the high convergence rate of numerical integration techniques like 
Gaussian quadrature for individual low-dimensional random input spaces. This reduced the 
number of 105 simulation runs for SGM for the reference UQ results to 26 simulation runs 
for PCE–HDMR, which originate from five simulations per random input variable and the 
calculation at the reference point. PCE–HDMR facilitates tremendous savings of comput-
ing resources while preserving high accuracy and is therefore suitable for the application to 
industrial scale CFD applications.
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