001     1016953
005     20231027114417.0
024 7 _ |a 10.1186/s12915-022-01506-w
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03861
|2 datacite_doi
024 7 _ |a 36737754
|2 pmid
024 7 _ |a WOS:000940546800003
|2 WOS
037 _ _ |a FZJ-2023-03861
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Sternke-Hoffmann, Rebecca
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Widespread amyloidogenicity potential of multiple myeloma patient-derived immunoglobulin light chains
260 _ _ |a Heidelberg
|c 2023
|b Springer
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1697180998_3380
|2 PUB:(DE-HGF)
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background:In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity.Results:We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins.Conclusions:We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pauly, Thomas
|0 P:(DE-Juel1)184822
|b 1
700 1 _ |a Norrild, Rasmus K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hansen, Jan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tucholski, Florian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Høie, Magnus Haraldson
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Marcatili, Paolo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dupré, Mathieu
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Duchateau, Magalie
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rey, Martial
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Malosse, Christian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Metzger, Sabine
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Boquoi, Amelie
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Platten, Florian
|0 P:(DE-Juel1)180761
|b 13
|u fzj
700 1 _ |a Egelhaaf, Stefan U.
|0 P:(DE-Juel1)IHRS-BioSoft-20902
|b 14
700 1 _ |a Chamot-Rooke, Julia
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Fenk, Roland
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 17
|u fzj
700 1 _ |a Haas, Rainer
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
700 1 _ |a Buell, Alexander K.
|0 0000-0003-1161-3622
|b 19
|e Corresponding author
773 _ _ |a 10.1186/s12915-022-01506-w
|g Vol. 21, no. 1, p. 21
|0 PERI:(DE-600)2133020-7
|n 1
|p 21
|t BMC biology
|v 21
|y 2023
|x 1741-7007
856 4 _ |u https://juser.fz-juelich.de/record/1016953/files/s12915-022-01506-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1016953
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)180761
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)162443
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:07:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:07:15Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-09-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC BIOL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T09:07:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BMC BIOL : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 1
980 _ _ |a review
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21