001016955 001__ 1016955
001016955 005__ 20240712113245.0
001016955 0247_ $$2doi$$a10.1039/D3TA03216G
001016955 0247_ $$2ISSN$$a2050-7488
001016955 0247_ $$2ISSN$$a2050-7496
001016955 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03863
001016955 0247_ $$2WOS$$aWOS:001077204700001
001016955 037__ $$aFZJ-2023-03863
001016955 082__ $$a530
001016955 1001_ $$0P:(DE-HGF)0$$aBoström, Oskar$$b0
001016955 245__ $$aAlkali-stable polybenzimidazole anion exchange membranes tethered with N , N -dimethylpiperidinium cations for dilute aqueous KOH fed water electrolyzers
001016955 260__ $$aLondon [u.a.]$$bRSC$$c2023
001016955 3367_ $$2DRIVER$$aarticle
001016955 3367_ $$2DataCite$$aOutput Types/Journal article
001016955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697187635_18136
001016955 3367_ $$2BibTeX$$aARTICLE
001016955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016955 3367_ $$00$$2EndNote$$aJournal Article
001016955 520__ $$aPolybenzimidazole (PBI) is currently considered as a membrane material for alkaline water electrolyzers (AWEs), and has to be fed with highly concentrated aqueous KOH electrolytes in order to ensure sufficient electrolyte uptake and conductivity. However, the harsh operating conditions significantly limit the lifetime of PBI membranes. In response, we here report on the synthesis and performance of a series of PBI membranes tethered with alkali-stable mono-piperidinium (monoPip) and bis-piperidinium (bisPip) side groups, respectively, which allows the use of more dilute KOH concentrations. The electrolyte uptake of these membranes was found to be inversely proportional to the electrolyte concentration, which was in stark contrast to pristine PBI membranes. The high electrolyte uptake at low concentrations by the present membranes enables operation of AEMWE systems fed with dilute electrolytes, which significantly decrease membrane degradation. After immersion in 2 M aqueous KOH at 80 °C for up to 6 months, no degradation was detected by 1H NMR spectroscopy in the monoPip series of AEMs, and a mere 7% ionic loss by Hofmann elimination in the bisPip series. Membranes tethered with bisPip groups produced the best AEMWE performance, and a sample with a hydroxide ion exchange capacity of 2.4 meq. g−1 reached a high current density of 358 mA cm−2 at 2 V with demonstrated stability over 100 h, using 2 M aqueous KOH and only simple nickel foam electrodes. This is comparable to the performance reported for Zirfon diaphragms and pristine PBI membranes operating with much higher concentrations of KOH in the range of 5–7 M. The low KOH concentration of the present membranes brings important advantages for the material stability in the cell, as well as for the balance of plant, and the results provide useful insights into the molecular design of AEMs for dilute electrolyte-fed AEMWE systems.
001016955 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001016955 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016955 7001_ $$00000-0003-0856-5404$$aChoi, Seung-Young$$b1
001016955 7001_ $$0P:(DE-Juel1)175127$$aXia, Lu$$b2
001016955 7001_ $$0P:(DE-HGF)0$$aMeital, Shviro$$b3
001016955 7001_ $$0P:(DE-Juel1)176513$$aLohmann-Richters, Felix$$b4
001016955 7001_ $$00000-0002-9649-7781$$aJannasch, Patric$$b5$$eCorresponding author
001016955 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA03216G$$gVol. 11, no. 39, p. 21170 - 21182$$n39$$p21170 - 21182$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001016955 8564_ $$uhttps://juser.fz-juelich.de/record/1016955/files/d3ta03216g.pdf$$yOpenAccess
001016955 909CO $$ooai:juser.fz-juelich.de:1016955$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176513$$aForschungszentrum Jülich$$b4$$kFZJ
001016955 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001016955 9141_ $$y2023
001016955 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001016955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001016955 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001016955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001016955 920__ $$lyes
001016955 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001016955 9801_ $$aFullTexts
001016955 980__ $$ajournal
001016955 980__ $$aVDB
001016955 980__ $$aUNRESTRICTED
001016955 980__ $$aI:(DE-Juel1)IEK-14-20191129
001016955 981__ $$aI:(DE-Juel1)IET-4-20191129