001016956 001__ 1016956
001016956 005__ 20231116095330.0
001016956 0247_ $$2doi$$a10.1103/PhysRevResearch.5.033130
001016956 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03864
001016956 0247_ $$2WOS$$aWOS:001061026200004
001016956 037__ $$aFZJ-2023-03864
001016956 082__ $$a530
001016956 1001_ $$00000-0003-3058-808X$$aBlain, Ben$$b0$$eCorresponding author
001016956 245__ $$aSoliton versus single-photon quantum dynamics in arrays of superconducting qubits
001016956 260__ $$aCollege Park, MD$$bAPS$$c2023
001016956 3367_ $$2DRIVER$$aarticle
001016956 3367_ $$2DataCite$$aOutput Types/Journal article
001016956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697537877_30346
001016956 3367_ $$2BibTeX$$aARTICLE
001016956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016956 3367_ $$00$$2EndNote$$aJournal Article
001016956 520__ $$aSuperconducting circuits constitute a promising platform for future implementation of quantum processors and simulators. Arrays of capacitively coupled transmon qubits naturally implement the Bose-Hubbard model with attractive on-site interaction. The spectrum of such many-body systems is characterized by low-energy localized states defining the lattice analog of bright solitons. Here, we demonstrate that these bright solitons can be pinned in the system, and we find that a soliton moves while maintaining its shape. Its velocity obeys a scaling law in terms of the combined interaction and number of constituent bosons. In contrast, the source-to-drain transport of photons through the array occurs through extended states that have higher energy compared to the bright soliton. For weak coupling between the source or drain and the array, the populations of the source and drain oscillate in time; for chains of even length, their population remains low at all times, while it can reach half the number of total bosons in odd chains. Implications of our results for actual experimental realizations are discussed.
001016956 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001016956 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016956 7001_ $$00000-0003-3285-3238$$aMarchegiani, Giampiero$$b1
001016956 7001_ $$00000-0003-0742-6015$$aPolo, Juan$$b2
001016956 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b3
001016956 7001_ $$00000-0002-9024-5727$$aAmico, Luigi$$b4
001016956 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.5.033130$$gVol. 5, no. 3, p. 033130$$n3$$p033130$$tPhysical review research$$v5$$x2643-1564$$y2023
001016956 8564_ $$uhttps://juser.fz-juelich.de/record/1016956/files/PhysRevResearch.5.033130.pdf$$yOpenAccess
001016956 909CO $$ooai:juser.fz-juelich.de:1016956$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001016956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b3$$kFZJ
001016956 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001016956 9141_ $$y2023
001016956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016956 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001016956 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
001016956 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
001016956 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
001016956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001016956 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001016956 920__ $$lyes
001016956 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001016956 980__ $$ajournal
001016956 980__ $$aVDB
001016956 980__ $$aUNRESTRICTED
001016956 980__ $$aI:(DE-Juel1)PGI-11-20170113
001016956 9801_ $$aFullTexts