001016960 001__ 1016960
001016960 005__ 20240708132708.0
001016960 037__ $$aFZJ-2023-03867
001016960 041__ $$aEnglish
001016960 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
001016960 1112_ $$aV2023$$cDresden$$d2023-09-18 - 2023-09-21$$wGermany
001016960 245__ $$aDevelopment of solid-state batteriesby plasma-assisted thin-film technologies
001016960 260__ $$c2023
001016960 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1698298790_15026
001016960 3367_ $$033$$2EndNote$$aConference Paper
001016960 3367_ $$2BibTeX$$aINPROCEEDINGS
001016960 3367_ $$2DRIVER$$aconferenceObject
001016960 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001016960 3367_ $$2ORCID$$aOTHER
001016960 520__ $$aOxide-based solid-state batteries use a solid glass or ceramic material as ion-conductor instead of a liquid electrolyte. In general, they allow high battery cell voltages of more than 5 V and benefit from high thermal stability, less toxicity and non-flammability. They still need to catch up with today’s high performance of their counterparts with liquid electrolyte. Advances of electrode and electrolyte materials as well as optimal material combinations are an absolute must for achieving the full potential of solid-state battery cells. This presentation shows examples how plasma-assisted thin-film technology helps in solving material compatibility issues and in finding novel materials by so-called material libraries that may be used for later artificial intelligence (AI) approaches.
001016960 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001016960 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001016960 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
001016960 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2
001016960 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$ufzj
001016960 7001_ $$0P:(DE-Juel1)144726$$aWilkner, Kai$$b4$$ufzj
001016960 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b5$$ufzj
001016960 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b6$$ufzj
001016960 909CO $$ooai:juser.fz-juelich.de:1016960$$pVDB
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b0$$kFZJ
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b3$$kFZJ
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144726$$aForschungszentrum Jülich$$b4$$kFZJ
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b5$$kFZJ
001016960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b6$$kFZJ
001016960 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001016960 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001016960 9141_ $$y2023
001016960 920__ $$lyes
001016960 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001016960 980__ $$aabstract
001016960 980__ $$aVDB
001016960 980__ $$aI:(DE-Juel1)IEK-1-20101013
001016960 980__ $$aUNRESTRICTED
001016960 981__ $$aI:(DE-Juel1)IMD-2-20101013