001     1016966
005     20250203103223.0
024 7 _ |a 10.1145/3589737.3605967
|2 doi
037 _ _ |a FZJ-2023-03873
041 _ _ |a English
100 1 _ |a Lohoff, Jamie
|0 P:(DE-Juel1)192147
|b 0
111 2 _ |a International Conference on Neuromorphic Systems
|g ICONS
|c Santa Fe
|d 2023-08-03 - 2023-08-05
|w USA
245 _ _ |a Interfacing Neuromorphic Hardware with Machine Learning Frameworks - A Review
260 _ _ |c 2023
|b ACM New York, NY, USA
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Proceedings
|b proc
|m proc
|0 PUB:(DE-HGF)26
|s 1710249458_19742
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Conference Proceedings
|0 3
|2 EndNote
336 7 _ |a PROCEEDINGS
|2 BibTeX
520 _ _ |a With the emergence of neuromorphic hardware as a promising low-power parallel computing platform, the need for tools that allowresearchers and engineers to efficiently interact with such hardwareis rapidly growing. Machine learning frameworks like Tensorflow,PyTorch and JAX have been instrumental for the success of machinelearning in recent years as they enable seamless interaction withtraditional machine learning accelerators such as GPUs and TPUs.In stark contrast, interfacing with neuromorphic hardware remainsdifficult since the aforementioned frameworks do not address thechallenges associated with mapping neural network models and al-gorithms to physical hardware. In this paper, we review the variousstrategies employed throughout the neuromorphic computing com-munity to tackle these challenges and categorize them according totheir methodologies and implementation effort. This classificationserves as a guideline for device engineers and software developersalike to enable them to choose the best-fit solution in regard of theirdemands and available resources. Finally, we provide a JAX-basedproof-of-concept implementation of a compilation pipeline tailoredto the needs of researchers in the early stages of device develop-ment, where parts of the computational graph can be mapped ontocustom hardware via operations exposed through a C++ or Pythoninterface. The code is available at https://github.com/PGI15/xbarax.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 1
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Yu, Zhenming
|0 P:(DE-Juel1)190500
|b 1
|u fzj
700 1 _ |a Finkbeiner, Jan Robert
|0 P:(DE-Juel1)190112
|b 2
700 1 _ |a Kaya, Anil
|0 P:(DE-Juel1)192456
|b 3
700 1 _ |a Stewart, Kenneth
|0 P:(DE-Juel1)195754
|b 4
700 1 _ |a Wai Lui, Hin
|0 0000-0002-7637-7168
|b 5
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 6
773 _ _ |a 10.1145/3589737.3605967
909 C O |o oai:juser.fz-juelich.de:1016966
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192147
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190500
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
980 _ _ |a proc
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21