001     1016975
005     20231116095327.0
024 7 _ |a 10.1038/s42003-023-05379-9
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03882
|2 datacite_doi
024 7 _ |a 37783812
|2 pmid
024 7 _ |a WOS:001083931000002
|2 WOS
037 _ _ |a FZJ-2023-03882
082 _ _ |a 570
100 1 _ |a Tiozon, Rhowell Jr. N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Metabolomics and machine learning technique revealed that germination enhances the multi-nutritional properties of pigmented rice
260 _ _ |a London
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697430007_31292
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Enhancing the dietary properties of rice is crucial to contribute to alleviating hidden hunger and non-communicable diseases in rice-consuming countries. Germination is a bioprocessing approach to increase the bioavailability of nutrients in rice. However, there is a scarce information on how germination impacts the overall nutritional profile of pigmented rice sprouts (PRS). Herein, we demonstrated that germination resulted to increase levels of certain dietary compounds, such as free phenolics and micronutrients (Ca, Na, Fe, Zn, riboflavin, and biotin). Metabolomic analysis revealed the preferential accumulation of dipeptides, GABA, and flavonoids in the germination process. Genome-wide association studies of the PRS suggested the activation of specific genes such as CHS1 and UGT genes responsible for increasing certain flavonoid compounds. Haplotype analyses showed a significant difference (P < 0.05) between alleles associated with these genes. Genetic markers associated with these flavonoids were incorporated into the random forest model, improving the accuracy of prediction of multi-nutritional properties from 89.7% to 97.7%. Deploying this knowledge to breed rice with multi-nutritional properties will be timely to address double burden nutritional challenges
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sreenivasulu, Nese
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alseekh, Saleh
|0 0000-0003-2067-5235
|b 2
700 1 _ |a Sartagoda, Kristel June D.
|0 0000-0003-4916-9897
|b 3
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 4
700 1 _ |a Fernie, Alisdair R.
|0 0000-0001-9000-335X
|b 5
|e Corresponding author
773 _ _ |a 10.1038/s42003-023-05379-9
|g Vol. 6, no. 1, p. 1000
|0 PERI:(DE-600)2919698-X
|n 1
|p 1000
|t Communications biology
|v 6
|y 2023
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/1016975/files/2023_Tiozon%20et%20al_Metabolomics%20and%20machine%20learning%20technique%20revealed%20that%20germination%20enhances%20the%20multi-nutritinal%20properties%20of%20pigmented%20rice.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1016975
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145719
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21