001016980 001__ 1016980
001016980 005__ 20240709081918.0
001016980 037__ $$aFZJ-2023-03887
001016980 041__ $$aEnglish
001016980 1001_ $$0P:(DE-Juel1)190784$$aAli, Haider Adel$$b0$$eCorresponding author
001016980 1112_ $$aAdvanced battery power conference$$cAachen$$d2023-04-27 - 2023-04-28$$wGermany
001016980 245__ $$aA comparison between physics-based Li-ion battery models
001016980 260__ $$c2023
001016980 3367_ $$033$$2EndNote$$aConference Paper
001016980 3367_ $$2BibTeX$$aINPROCEEDINGS
001016980 3367_ $$2DRIVER$$aconferenceObject
001016980 3367_ $$2ORCID$$aCONFERENCE_POSTER
001016980 3367_ $$2DataCite$$aOutput Types/Conference Poster
001016980 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1698232912_10049$$xAfter Call
001016980 520__ $$aPhysics-based electrochemical battery models are widely used as powerful tools for simulating lithium-ion battery behavior and for providing an understanding of the internal physical and electrochemical processes. However, due to their complexity and high computational demand, these models may not be feasible for battery management systems (BMS) and long-term aging simulations. Models with reduced order, such as the Extended Single Particle Model (ESPM), Single Particle Model (SPM), and Polynomial and Padé approximations, calculating Fick's 2nd law, improve calculation speed. However, choosing the appropriate simplification approach for a particular cell type and operating condition can be challenging. This study provides insights into the simulation accuracy and calculation speed of various reduced-order models for high-energy (HE) and high-power (HP) batteries at various C-rates. Results are compared to the DFN model.
001016980 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001016980 536__ $$0G:(DE-Juel1)BMBF-03SF0628$$aLLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)$$cBMBF-03SF0628$$x1
001016980 7001_ $$0P:(DE-Juel1)176196$$aRaijmakers, Luc$$b1
001016980 7001_ $$0P:(DE-Juel1)173719$$aDanilov, Dmitri$$b2
001016980 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b3
001016980 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
001016980 909CO $$ooai:juser.fz-juelich.de:1016980$$pVDB
001016980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190784$$aForschungszentrum Jülich$$b0$$kFZJ
001016980 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)190784$$aRWTH Aachen$$b0$$kRWTH
001016980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176196$$aForschungszentrum Jülich$$b1$$kFZJ
001016980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173719$$aForschungszentrum Jülich$$b2$$kFZJ
001016980 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173719$$a Eindhoven University of Technology$$b2
001016980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b3$$kFZJ
001016980 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a Eindhoven University of Technology$$b3
001016980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001016980 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001016980 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001016980 9141_ $$y2023
001016980 920__ $$lyes
001016980 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001016980 980__ $$aposter
001016980 980__ $$aVDB
001016980 980__ $$aI:(DE-Juel1)IEK-9-20110218
001016980 980__ $$aUNRESTRICTED
001016980 981__ $$aI:(DE-Juel1)IET-1-20110218