001     1016980
005     20240709081918.0
037 _ _ |a FZJ-2023-03887
041 _ _ |a English
100 1 _ |a Ali, Haider Adel
|0 P:(DE-Juel1)190784
|b 0
|e Corresponding author
111 2 _ |a Advanced battery power conference
|c Aachen
|d 2023-04-27 - 2023-04-28
|w Germany
245 _ _ |a A comparison between physics-based Li-ion battery models
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1698232912_10049
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Physics-based electrochemical battery models are widely used as powerful tools for simulating lithium-ion battery behavior and for providing an understanding of the internal physical and electrochemical processes. However, due to their complexity and high computational demand, these models may not be feasible for battery management systems (BMS) and long-term aging simulations. Models with reduced order, such as the Extended Single Particle Model (ESPM), Single Particle Model (SPM), and Polynomial and Padé approximations, calculating Fick's 2nd law, improve calculation speed. However, choosing the appropriate simplification approach for a particular cell type and operating condition can be challenging. This study provides insights into the simulation accuracy and calculation speed of various reduced-order models for high-energy (HE) and high-power (HP) batteries at various C-rates. Results are compared to the DFN model.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)
|0 G:(DE-Juel1)BMBF-03SF0628
|c BMBF-03SF0628
|x 1
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 1
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 2
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
909 C O |o oai:juser.fz-juelich.de:1016980
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165918
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)165918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21