Home > Publications database > A Hybrid Electrochemical Multi-Particle Model for Li-ion Batteries |
Poster (After Call) | FZJ-2023-03888 |
; ; ; ; ;
2023
Abstract: Physics-based models have proven to be effective tools for understanding the behavior of Li-ion batteries, which is essential for improving their design and performance. Among the various physics-based models, the Doyle-Fuller-Newman (DFN) model has emerged as the most widely used due to its accurate simulation of battery behavior. To address certain limitations, the Multiple-Particle DFN (MP-DFN) model was introduced. The MP-DFN model employs multiple electrode particle sizes to account for internal concentration heterogeneities and accurately capture slow diffusion processes. However, it is worth noting that the MP-DFN model comes with a relatively high computational cost. To overcome these challenges, this study has developed a Hybrid-Multiple-Particle DFN (HMP-DFN) model.
![]() |
The record appears in these collections: |