001017059 001__ 1017059
001017059 005__ 20240223132826.0
001017059 0247_ $$2doi$$a10.3390/rs15194835
001017059 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03901
001017059 0247_ $$2WOS$$aWOS:001084676300001
001017059 037__ $$aFZJ-2023-03901
001017059 041__ $$aEnglish
001017059 082__ $$a620
001017059 1001_ $$0P:(DE-HGF)0$$aJantol, Nela$$b0$$eCorresponding author
001017059 245__ $$aUsing Sentinel-2-Based Metrics to Characterize the Spatial Heterogeneity of FLEX Sun-Induced Chlorophyll Fluorescence on Sub-Pixel Scale
001017059 260__ $$aBasel$$bMDPI$$c2023
001017059 3367_ $$2DRIVER$$aarticle
001017059 3367_ $$2DataCite$$aOutput Types/Journal article
001017059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700147791_13604
001017059 3367_ $$2BibTeX$$aARTICLE
001017059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017059 3367_ $$00$$2EndNote$$aJournal Article
001017059 520__ $$aCurrent and upcoming Sun‑Induced chlorophyll Fluorescence (SIF) satellite products(e.g., GOME, TROPOMI, OCO, FLEX) have medium‑to‑coarse spatial resolutions (i.e., 0.3–80 km)and integrate radiances from different sources into a single ground surface unit (i.e., pixel). However,intrapixel heterogeneity, i.e., different soil and vegetation fractional cover and/or different chlorophyllcontent or vegetation structure in a fluorescence pixel, increases the challenge in retrievingand quantifying SIF. High spatial resolution Sentinel‑2 (S2) data (20 m) can be used to better characterizethe intrapixel heterogeneity of SIF and potentially extend the application of satellite‑derivedSIF to heterogeneous areas. In the context of the COST Action Optical synergies for spatiotemporalSENsing of Scalable ECOphysiological traits (SENSECO), in which this study was conducted, weproposed direct (i.e., spatial heterogeneity coefficient, standard deviation, normalized entropy, ensembledecision trees) and patch mosaic (i.e., local Moran’s I) approaches to characterize the spatialheterogeneity of SIF collected at 760 and 687 nm (SIF760 and SIF687, respectively) and to correlateit with the spatial heterogeneity of selected S2 derivatives. We used HyPlant airborne imagery acquiredover an agricultural area in Braccagni (Italy) to emulate S2‑like top‑of‑the‑canopy reflectanceand SIF imagery at different spatial resolutions (i.e., 300, 20, and 5 m). The ensemble decision treesmethod characterized FLEX intrapixel heterogeneity best (R2 > 0.9 for all predictors with respect toSIF760 and SIF687). Nevertheless, the standard deviation and spatial heterogeneity coefficient using kmeansclustering scene classification also provided acceptable results. In particular, the near‑infraredreflectance of terrestrial vegetation (NIRv) index accounted for most of the spatial heterogeneity ofSIF760 in all applied methods (R2 = 0.76 with the standard deviation method; R2 = 0.63 with the spatialheterogeneity coefficient method using a scene classification map with 15 classes). The models developed for SIF687 did not perform as well as those for SIF760, possibly due to the uncertaintiesin fluorescence retrieval at 687 nm and the low signal‑to‑noise ratio in the red spectral region. Ourstudy shows the potential of the proposed methods to be implemented as part of the FLEX groundsegment processing chain to quantify the intrapixel heterogeneity of a FLEX pixel and/or as a qualityflag to determine the reliability of the retrieved fluorescence.
001017059 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001017059 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017059 7001_ $$0P:(DE-HGF)0$$aPrikaziuk, Egor$$b1$$eCorresponding author
001017059 7001_ $$00000-0001-7249-7106$$aCelesti, Marco$$b2
001017059 7001_ $$00000-0002-1623-9337$$aHernandez-Sequeira, Itza$$b3
001017059 7001_ $$00000-0001-6546-6459$$aTomelleri, Enrico$$b4
001017059 7001_ $$00000-0003-3401-7081$$aPacheco-Labrador, Javier$$b5
001017059 7001_ $$00000-0002-5699-0352$$aVan Wittenberghe, Shari$$b6
001017059 7001_ $$00000-0003-0054-3489$$aPla, Filiberto$$b7
001017059 7001_ $$00000-0002-8657-3488$$aBandopadhyay, Subhajit$$b8
001017059 7001_ $$00000-0002-2275-0713$$aKoren, Gerbrand$$b9
001017059 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b10
001017059 7001_ $$0P:(DE-HGF)0$$aLegović, Tarzan$$b11
001017059 7001_ $$0P:(DE-HGF)0$$aKutnjak, Hrvoje$$b12
001017059 7001_ $$00000-0001-5887-7890$$aCendrero-Mateo, M. Pilar$$b13
001017059 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs15194835$$gVol. 15, no. 19, p. 4835 -$$n19$$p4835 -$$tRemote sensing$$v15$$x2072-4292$$y2023
001017059 8564_ $$uhttps://juser.fz-juelich.de/record/1017059/files/remotesensing-15-04835.pdf$$yOpenAccess
001017059 909CO $$ooai:juser.fz-juelich.de:1017059$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b10$$kFZJ
001017059 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001017059 9141_ $$y2023
001017059 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-09-02
001017059 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017059 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:11Z
001017059 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:11Z
001017059 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-09-02
001017059 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-02
001017059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017059 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-02
001017059 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:03:11Z
001017059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2022$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-02-05
001017059 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS-BASEL : 2022$$d2024-02-05
001017059 920__ $$lyes
001017059 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001017059 980__ $$ajournal
001017059 980__ $$aVDB
001017059 980__ $$aUNRESTRICTED
001017059 980__ $$aI:(DE-Juel1)IBG-2-20101118
001017059 9801_ $$aFullTexts