001     1017059
005     20240223132826.0
024 7 _ |a 10.3390/rs15194835
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03901
|2 datacite_doi
024 7 _ |a WOS:001084676300001
|2 WOS
037 _ _ |a FZJ-2023-03901
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Jantol, Nela
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Using Sentinel-2-Based Metrics to Characterize the Spatial Heterogeneity of FLEX Sun-Induced Chlorophyll Fluorescence on Sub-Pixel Scale
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700147791_13604
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current and upcoming Sun‑Induced chlorophyll Fluorescence (SIF) satellite products(e.g., GOME, TROPOMI, OCO, FLEX) have medium‑to‑coarse spatial resolutions (i.e., 0.3–80 km)and integrate radiances from different sources into a single ground surface unit (i.e., pixel). However,intrapixel heterogeneity, i.e., different soil and vegetation fractional cover and/or different chlorophyllcontent or vegetation structure in a fluorescence pixel, increases the challenge in retrievingand quantifying SIF. High spatial resolution Sentinel‑2 (S2) data (20 m) can be used to better characterizethe intrapixel heterogeneity of SIF and potentially extend the application of satellite‑derivedSIF to heterogeneous areas. In the context of the COST Action Optical synergies for spatiotemporalSENsing of Scalable ECOphysiological traits (SENSECO), in which this study was conducted, weproposed direct (i.e., spatial heterogeneity coefficient, standard deviation, normalized entropy, ensembledecision trees) and patch mosaic (i.e., local Moran’s I) approaches to characterize the spatialheterogeneity of SIF collected at 760 and 687 nm (SIF760 and SIF687, respectively) and to correlateit with the spatial heterogeneity of selected S2 derivatives. We used HyPlant airborne imagery acquiredover an agricultural area in Braccagni (Italy) to emulate S2‑like top‑of‑the‑canopy reflectanceand SIF imagery at different spatial resolutions (i.e., 300, 20, and 5 m). The ensemble decision treesmethod characterized FLEX intrapixel heterogeneity best (R2 > 0.9 for all predictors with respect toSIF760 and SIF687). Nevertheless, the standard deviation and spatial heterogeneity coefficient using kmeansclustering scene classification also provided acceptable results. In particular, the near‑infraredreflectance of terrestrial vegetation (NIRv) index accounted for most of the spatial heterogeneity ofSIF760 in all applied methods (R2 = 0.76 with the standard deviation method; R2 = 0.63 with the spatialheterogeneity coefficient method using a scene classification map with 15 classes). The models developed for SIF687 did not perform as well as those for SIF760, possibly due to the uncertaintiesin fluorescence retrieval at 687 nm and the low signal‑to‑noise ratio in the red spectral region. Ourstudy shows the potential of the proposed methods to be implemented as part of the FLEX groundsegment processing chain to quantify the intrapixel heterogeneity of a FLEX pixel and/or as a qualityflag to determine the reliability of the retrieved fluorescence.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Prikaziuk, Egor
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Celesti, Marco
|0 0000-0001-7249-7106
|b 2
700 1 _ |a Hernandez-Sequeira, Itza
|0 0000-0002-1623-9337
|b 3
700 1 _ |a Tomelleri, Enrico
|0 0000-0001-6546-6459
|b 4
700 1 _ |a Pacheco-Labrador, Javier
|0 0000-0003-3401-7081
|b 5
700 1 _ |a Van Wittenberghe, Shari
|0 0000-0002-5699-0352
|b 6
700 1 _ |a Pla, Filiberto
|0 0000-0003-0054-3489
|b 7
700 1 _ |a Bandopadhyay, Subhajit
|0 0000-0002-8657-3488
|b 8
700 1 _ |a Koren, Gerbrand
|0 0000-0002-2275-0713
|b 9
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 10
700 1 _ |a Legović, Tarzan
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kutnjak, Hrvoje
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Cendrero-Mateo, M. Pilar
|0 0000-0001-5887-7890
|b 13
773 _ _ |a 10.3390/rs15194835
|g Vol. 15, no. 19, p. 4835 -
|0 PERI:(DE-600)2513863-7
|n 19
|p 4835 -
|t Remote sensing
|v 15
|y 2023
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/1017059/files/remotesensing-15-04835.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1017059
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)172711
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-09-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:03:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:03:11Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-09-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:03:11Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-02-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS-BASEL : 2022
|d 2024-02-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21