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Introduction
Single neurons in M1 encode the direction of hand movement
in their firing rate. The direction of hand movement that
leads to maximal firing is termed the preferred direction (PD)
[1]. Across many recorded neurons, the distribution of PDs
was assumed to be uniform, which could be confirmed for
3D movements [2,3]. However, for movements constrained
to 2D, this distribution of PDs showed a systematic bias [4]
that could be traced back to the biomechanics of the arm
[5,6,7] and is closely related to muscle activity. Unexpectedly,
the same bimodality could also be observed in neurons from
premotor areas [8]. Given these observations, we ask: Is the
bimodality of the distribution of PDs that has been observed
in M1 and PMd/PMv also present in the parietal and visual
cortex of macaque monkeys that perform a visually guided
reaching task in the 2D plane?

Results
Tuning curve of a single unit

Distribution of PDs across units

Summary

In this study, we investigated single unit selectivity from si-
multaneous, multi-area, multi-electrode array recordings along
the dorsal visual stream. A GLM framework enables us to dis-
entangle the effect of different behaviors on the single unit
activity and isolate the purely movement related activity.
We reproduce the bimodality of the distribution of PDs that
has been observed in M1 and PMd/PMv in our dataset.
Furthermore, we are able to answer our original question: We
do find significantly bimodal distributions of PDs for hand
movement for both monkeys in V1-V2 and DP as well as for
monkey Enya also in 7A. In parietal cortex, the dominant ori-
entations are consistent with M1/PMd and across monkeys,
suggesting a common low-level movement representation.

Methods
Experimental Data

Two monkeys (macaca mulatta, female Enya and male Jazz)
were trained to perform visually guided motor tasks: a landing
task and a drawing task.

Extracellular neural activity was recorded simultaneously with
four Utah arrays of 36 electrodes each inserted in V1, V2, DP
and area 7A, and one array of 100 electrodes in M1/PMd.
To record the monkeys arm and hand movements [9] we em-
ployed a two-joint (shoulder and elbow) robotic exoskeleton
system (KINARM Exoskeleton Laboratory, BKIN Technolo-
gies) that restricted movement to 2D horizontal plane. Eye
movements were recorded via the EyeLink system (SR Re-
search; https//www.sr-research.com), an infrared light source
and camera.

• rejected channels with cross-correlation and participating in
many synchrofacts (see poster by Oberste-Frielinghaus)

•waveform SNR > 2.5, firing rate λ > 1

Generalized Linear Model (GLM)

• spike count yt per time bin is Poisson distributed:
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•mean firing rate that is explained by an exponential link
function and many regressors grouped into blocks:
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• regressor blocks: visual, eye position, saccade, hand posi-
tion, hand movement

• time-shifted copies of regressors included to capture re-
sponse (∼ 1500 regressors)

• Lasso-regularization with λLasso = 0.001, using Python
package statsmodel

As measure for the goodness-of-fit, we use the pseudo-R2

(between null model and saturated model):

R̃2 = 1−
logLsaturated − logL

logLsaturated − logLnull
,

The movement regressors assumes a von Mises-like functional
dependence on the instantaneous movement angle θ:

λmovement
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where τ is the time shift w.r.t. the neural activity.
To integrate out the effect of regressors that do not belong to
the movement regressor block, we calculate
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with S being the number of different shuffles [10].
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Outlook
The GLM framework further allows us to evaluate the impor-
tance of different behaviors for the single unit activity [11,12].
In this way, we are able to show the progressive decrease of
visual influence and increase of motor signals along the dorsal
visual stream.
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