001017090 001__ 1017090
001017090 005__ 20240116084320.0
001017090 0247_ $$2doi$$a10.1002/adma.202209581
001017090 0247_ $$2ISSN$$a0935-9648
001017090 0247_ $$2ISSN$$a1521-4095
001017090 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03932
001017090 0247_ $$2pmid$$a36670074
001017090 0247_ $$2WOS$$aWOS:000915668200001
001017090 037__ $$aFZJ-2023-03932
001017090 082__ $$a660
001017090 1001_ $$0P:(DE-HGF)0$$aXiang, Huai$$b0
001017090 245__ $$aHighly Damping and Self‐Healable Ionic Elastomer from Dynamic Phase Separation of Sticky Fluorinated Polymers
001017090 260__ $$aWeinheim$$bWiley-VCH$$c2023
001017090 3367_ $$2DRIVER$$aarticle
001017090 3367_ $$2DataCite$$aOutput Types/Journal article
001017090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698912705_25986
001017090 3367_ $$2BibTeX$$aARTICLE
001017090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017090 3367_ $$00$$2EndNote$$aJournal Article
001017090 520__ $$aShock-induced low-frequency vibration damage is extremely harmful to bionic soft robots and machines that may incur the malfunction of fragile electronic elements. However, current skin-like self-healable ionic elastomers as the artificial sensing and protecting layer still lack the ability to dampen vibrations, due to their almost opposite design for molecular frictions to material's elasticity. Inspired by the two-phase structure of adipose tissue (the natural damping skin layer), here, a highly damping ionic elastomer with energy-dissipating nanophases embedded in an elastic matrix is introduced, which is formed by polymerization-induced dynamic phase separation of sticky fluorinated copolymers in the presence of lithium salts. Such a supramolecular design decouples the elastic and damping functions into two distinct phases, and thus reconciles a few intriguing properties including ionic conductivity, high stretchability, softness, strain-stiffening, elastic recovery, room-temperature self-healability, recyclability, and most importantly, record-high damping capacity at the human motion frequency range (loss factor tan δ > 1 at 0.1–50 Hz). This study opens the door for the artificial syntheses of high-performance damping ionic skins with robust sensing and protective applications in soft electronics and robotics.
001017090 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001017090 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001017090 588__ $$aDataset connected to DataCite
001017090 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001017090 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001017090 693__ $$0EXP:(DE-MLZ)KWSX-20231024$$5EXP:(DE-MLZ)KWSX-20231024$$eKWS-X: SAXS-WAXS laboratory beamline$$x0
001017090 7001_ $$0P:(DE-HGF)0$$aLi, Xiaoxia$$b1
001017090 7001_ $$0P:(DE-Juel1)151161$$aWu, Baohu$$b2$$ufzj
001017090 7001_ $$0P:(DE-HGF)0$$aSun, Shengtong$$b3$$eCorresponding author
001017090 7001_ $$00000-0001-7235-210X$$aWu, Peiyi$$b4$$eCorresponding author
001017090 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202209581$$gVol. 35, no. 10, p. 2209581$$n10$$p2209581$$tAdvanced materials$$v35$$x0935-9648$$y2023
001017090 8564_ $$uhttps://juser.fz-juelich.de/record/1017090/files/Advanced%20Materials%20-%202023%20-%20Xiang%20-%20Highly%20Damping%20and%20Self%E2%80%90Healable%20Ionic%20Elastomer%20from%20Dynamic%20Phase%20Separation%20of.pdf
001017090 8564_ $$uhttps://juser.fz-juelich.de/record/1017090/files/am_xiang.pdf$$yOpenAccess
001017090 909CO $$ooai:juser.fz-juelich.de:1017090$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001017090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151161$$aForschungszentrum Jülich$$b2$$kFZJ
001017090 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001017090 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001017090 9141_ $$y2023
001017090 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017090 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001017090 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001017090 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
001017090 920__ $$lyes
001017090 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
001017090 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
001017090 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x2
001017090 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
001017090 980__ $$ajournal
001017090 980__ $$aVDB
001017090 980__ $$aUNRESTRICTED
001017090 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001017090 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001017090 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001017090 980__ $$aI:(DE-588b)4597118-3
001017090 9801_ $$aFullTexts