001 | 1017132 | ||
005 | 20240712084521.0 | ||
024 | 7 | _ | |a 10.1002/adma.202306351 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03953 |2 datacite_doi |
024 | 7 | _ | |a 37708374 |2 pmid |
024 | 7 | _ | |a WOS:001083113400001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03953 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Fischer, Benedikt |0 P:(DE-Juel1)167513 |b 0 |e Corresponding author |
245 | _ | _ | |a Insights into the Si─H Bonding Configuration at the Amorphous/Crystalline Silicon Interface of Silicon Heterojunction Solar Cells by Raman and FTIR Spectroscopy |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1702031580_18117 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In silicon heterojunction solar cell technology, thin layers of hydrogenated amorphous silicon (a-Si:H) are applied as passivating contacts to the crystalline silicon (c-Si) wafer. Thus, the properties of the a-Si:H is crucial for the performance of the solar cells. One important property of a-Si:H is its microstructure which can be characterized by the microstructure parameter R based on Si─H bond stretching vibrations. A common method to determine R is Fourier transform infrared (FTIR) absorption measurement which, however, is difficult to perform on solar cells for various reasons like the use of textured Si wafers and the presence of conducting oxide contact layers. Here, it is demonstrated that Raman spectroscopy is suitable to determine the microstructure of bulk a-Si:H layers of 10 nm or less on textured c-Si underneath indium tin oxide as conducting oxide. A detailed comparison of FTIR and Raman spectra is performed and significant differences in the microstructure parameter are obtained by both methods with decreasing a-Si:H film thickness. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lambertz, Andreas |0 P:(DE-Juel1)130263 |b 1 |
700 | 1 | _ | |a Nuys, Maurice |0 P:(DE-Juel1)130277 |b 2 |
700 | 1 | _ | |a Beyer, Wolfhard |0 P:(DE-Juel1)130217 |b 3 |
700 | 1 | _ | |a Duan, Weiyuan |0 P:(DE-Juel1)169946 |b 4 |
700 | 1 | _ | |a Bittkau, Karsten |0 P:(DE-Juel1)130219 |b 5 |
700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 6 |
700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)130285 |b 7 |
773 | _ | _ | |a 10.1002/adma.202306351 |g p. 2306351 |0 PERI:(DE-600)1474949-X |n 47 |p 2306351 |t Advanced materials |v 35 |y 2023 |x 0935-9648 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1017132/files/Advanced%20Materials%20-%202023%20-%20Fischer%20-%20Insights%20into%20the%20Si%20H%20Bonding%20Configuration%20at%20the%20Amorphous%20Crystalline%20Silicon.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1017132/files/Advanced%20Materials%20-%202023%20-%20Fischer%20-%20Insights%20into%20the%20Si%20H%20Bonding%20Configuration%20at%20the%20Amorphous%20Crystalline%20Silicon.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1017132/files/Advanced%20Materials%20-%202023%20-%20Fischer%20-%20Insights%20into%20the%20Si%20H%20Bonding%20Configuration%20at%20the%20Amorphous%20Crystalline%20Silicon.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1017132/files/Advanced%20Materials%20-%202023%20-%20Fischer%20-%20Insights%20into%20the%20Si%20H%20Bonding%20Configuration%20at%20the%20Amorphous%20Crystalline%20Silicon.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1017132/files/Advanced%20Materials%20-%202023%20-%20Fischer%20-%20Insights%20into%20the%20Si%20H%20Bonding%20Configuration%20at%20the%20Amorphous%20Crystalline%20Silicon.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1017132 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167513 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130263 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130277 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130217 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169946 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130219 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130233 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130285 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Wiley 2019 |0 PC:(DE-HGF)0120 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-31 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-31 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-31 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2022 |d 2023-10-21 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|