001017170 001__ 1017170
001017170 005__ 20231108201912.0
001017170 037__ $$aFZJ-2023-03983
001017170 1001_ $$0P:(DE-Juel1)130797$$aLettinga, M.P.$$b0$$eCorresponding author$$ufzj
001017170 1112_ $$aDycap 2023$$cCompiegne$$d2023-07-10 - 2023-07-13$$wFrance
001017170 245__ $$aCompetition between deformation and free volume quantified by 3D image analysis of red blood cells 
001017170 260__ $$c2023
001017170 3367_ $$033$$2EndNote$$aConference Paper
001017170 3367_ $$2DataCite$$aOther
001017170 3367_ $$2BibTeX$$aINPROCEEDINGS
001017170 3367_ $$2DRIVER$$aconferenceObject
001017170 3367_ $$2ORCID$$aLECTURE_SPEECH
001017170 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1699450778_14451$$xAfter Call
001017170 520__ $$aCells in living organisms are subjected to mechanical strains caused by external forces like overcrowding, resulting in strong deformations that affect cell function. We study the interplay between deformation and crowding of red blood cells (RBCs) in dispersions of non-absorbing rod-like viruses. We identify a sequence of configurational transitions of RBC doublets, including configurations that can only be induced by long-ranged attraction: highly fluctuating T-shaped and face-to-face configurations at low, and doublets approaching a complete spherical configuration at high rod concentrations.Complementary simulations are used to explore different energy contributions to deformation as well as the stability of RBC doublet configurations. Our advanced analysis of 3D reconstructed confocal images of RBCs doublets quantifies the depletion interaction and the resulting deformation energy. Thus, we introduce a non-invasive method, high-throughput platform that is generally applicable to investigate the mechanical response of biological cells to external forces andcharacterize their mechanical properties.
001017170 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001017170 7001_ $$0P:(DE-Juel1)176599$$aBabaki, Mehrnaz$$b1$$ufzj
001017170 7001_ $$0P:(DE-Juel1)177939$$aGholivand, Amirreza$$b2$$ufzj
001017170 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b3$$ufzj
001017170 7001_ $$0P:(DE-Juel1)188512$$aKorculanin, Olivera$$b4$$ufzj
001017170 7001_ $$0P:(DE-HGF)0$$aTuinier, Remco$$b5
001017170 7001_ $$0P:(DE-HGF)0$$aOpdam, Joeri$$b6
001017170 7001_ $$0P:(DE-HGF)0$$aWagner, Christian$$b7
001017170 909CO $$ooai:juser.fz-juelich.de:1017170$$pVDB
001017170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b0$$kFZJ
001017170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176599$$aForschungszentrum Jülich$$b1$$kFZJ
001017170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177939$$aForschungszentrum Jülich$$b2$$kFZJ
001017170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
001017170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188512$$aForschungszentrum Jülich$$b4$$kFZJ
001017170 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001017170 9141_ $$y2023
001017170 920__ $$lyes
001017170 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001017170 980__ $$aconf
001017170 980__ $$aVDB
001017170 980__ $$aI:(DE-Juel1)IBI-4-20200312
001017170 980__ $$aUNRESTRICTED