001017175 001__ 1017175
001017175 005__ 20240109115104.0
001017175 0247_ $$2doi$$a10.1038/s41598-023-37508-z
001017175 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03988
001017175 0247_ $$2pmid$$a37620339
001017175 0247_ $$2WOS$$aWOS:001113423900004
001017175 037__ $$aFZJ-2023-03988
001017175 082__ $$a600
001017175 1001_ $$0P:(DE-Juel1)176497$$aWiersch, Lisa$$b0$$ufzj
001017175 245__ $$aAccurate sex prediction of cisgender and transgender individuals without brain size bias
001017175 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2023
001017175 3367_ $$2DRIVER$$aarticle
001017175 3367_ $$2DataCite$$aOutput Types/Journal article
001017175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697715994_3864
001017175 3367_ $$2BibTeX$$aARTICLE
001017175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017175 3367_ $$00$$2EndNote$$aJournal Article
001017175 520__ $$ahe increasing use of machine learning approaches on neuroimaging data comes with the important concern of confounding variables which might lead to biased predictions and in turn spurious conclusions about the relationship between the features and the target. A prominent example is the brain size difference between women and men. This difference in total intracranial volume (TIV) can cause bias when employing machine learning approaches for the investigation of sex differences in brain morphology. A TIV-biased model will not capture qualitative sex differences in brain organization but rather learn to classify an individual’s sex based on brain size differences, thus leading to spurious and misleading conclusions, for example when comparing brain morphology between cisgender- and transgender individuals. In this study, TIV bias in sex classification models applied to cis- and transgender individuals was systematically investigated by controlling for TIV either through featurewise confound removal or by matching the training samples for TIV. Our results provide strong evidence that models not biased by TIV can classify the sex of both cis- and transgender individuals with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated decision making.
001017175 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001017175 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017175 7001_ $$0P:(DE-Juel1)184874$$aHamdan, Sami$$b1$$ufzj
001017175 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2$$ufzj
001017175 7001_ $$0P:(DE-Juel1)166584$$aVotinov, Mikhail$$b3$$ufzj
001017175 7001_ $$0P:(DE-Juel1)172840$$aHabel, Ute$$b4$$ufzj
001017175 7001_ $$0P:(DE-HGF)0$$aClemens, Benjamin$$b5
001017175 7001_ $$0P:(DE-HGF)0$$aDerntl, Birgit$$b6
001017175 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7$$ufzj
001017175 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b8$$eCorresponding author$$ufzj
001017175 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b9$$eCorresponding author$$ufzj
001017175 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-37508-z$$gVol. 13, no. 1, p. 13868$$n1$$p13868$$tScientific reports$$v13$$x2045-2322$$y2023
001017175 8564_ $$uhttps://juser.fz-juelich.de/record/1017175/files/s41598-023-37508-z.pdf$$yOpenAccess
001017175 8564_ $$uhttps://juser.fz-juelich.de/record/1017175/files/Manuscript_structural_sex_classification_srep.pdf$$yOpenAccess
001017175 8564_ $$uhttps://juser.fz-juelich.de/record/1017175/files/Supplements_Manuscript_structural_sex_classification_srep.pdf$$yOpenAccess
001017175 909CO $$ooai:juser.fz-juelich.de:1017175$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176497$$aForschungszentrum Jülich$$b0$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184874$$aForschungszentrum Jülich$$b1$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166584$$aForschungszentrum Jülich$$b3$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172840$$aForschungszentrum Jülich$$b4$$kFZJ
001017175 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-10$$b5
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b8$$kFZJ
001017175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b9$$kFZJ
001017175 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001017175 9141_ $$y2023
001017175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
001017175 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017175 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
001017175 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
001017175 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001017175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
001017175 920__ $$lyes
001017175 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001017175 980__ $$ajournal
001017175 980__ $$aVDB
001017175 980__ $$aUNRESTRICTED
001017175 980__ $$aI:(DE-Juel1)INM-7-20090406
001017175 9801_ $$aFullTexts