001     1017175
005     20240109115104.0
024 7 _ |a 10.1038/s41598-023-37508-z
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03988
|2 datacite_doi
024 7 _ |a 37620339
|2 pmid
024 7 _ |a WOS:001113423900004
|2 WOS
037 _ _ |a FZJ-2023-03988
082 _ _ |a 600
100 1 _ |a Wiersch, Lisa
|0 P:(DE-Juel1)176497
|b 0
|u fzj
245 _ _ |a Accurate sex prediction of cisgender and transgender individuals without brain size bias
260 _ _ |a [London]
|c 2023
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697715994_3864
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a he increasing use of machine learning approaches on neuroimaging data comes with the important concern of confounding variables which might lead to biased predictions and in turn spurious conclusions about the relationship between the features and the target. A prominent example is the brain size difference between women and men. This difference in total intracranial volume (TIV) can cause bias when employing machine learning approaches for the investigation of sex differences in brain morphology. A TIV-biased model will not capture qualitative sex differences in brain organization but rather learn to classify an individual’s sex based on brain size differences, thus leading to spurious and misleading conclusions, for example when comparing brain morphology between cisgender- and transgender individuals. In this study, TIV bias in sex classification models applied to cis- and transgender individuals was systematically investigated by controlling for TIV either through featurewise confound removal or by matching the training samples for TIV. Our results provide strong evidence that models not biased by TIV can classify the sex of both cis- and transgender individuals with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated decision making.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hamdan, Sami
|0 P:(DE-Juel1)184874
|b 1
|u fzj
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 2
|u fzj
700 1 _ |a Votinov, Mikhail
|0 P:(DE-Juel1)166584
|b 3
|u fzj
700 1 _ |a Habel, Ute
|0 P:(DE-Juel1)172840
|b 4
|u fzj
700 1 _ |a Clemens, Benjamin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Derntl, Birgit
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
|u fzj
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 8
|e Corresponding author
|u fzj
700 1 _ |a Weis, Susanne
|0 P:(DE-Juel1)172811
|b 9
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41598-023-37508-z
|g Vol. 13, no. 1, p. 13868
|0 PERI:(DE-600)2615211-3
|n 1
|p 13868
|t Scientific reports
|v 13
|y 2023
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017175/files/s41598-023-37508-z.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017175/files/Manuscript_structural_sex_classification_srep.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017175/files/Supplements_Manuscript_structural_sex_classification_srep.pdf
909 C O |o oai:juser.fz-juelich.de:1017175
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176497
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184874
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166584
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172840
910 1 _ |a INM-10
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172811
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21