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Abstract 1 

The increasing use of machine learning approaches on neuroimaging data comes with 2 

the important concern of confounding variables which might lead to biased predictions and in 3 

turn spurious conclusions about the relationship between the features and the target. A 4 

prominent example is the brain size difference between women and men. This difference in 5 

total intracranial volume (TIV) can cause bias when employing machine learning approaches 6 

for the investigation of sex differences in brain morphology. A TIV-biased model will not 7 

capture qualitative sex differences in brain organization but rather learn to classify an 8 

individual’s sex based on brain size differences, thus leading to spurious and misleading 9 

conclusions, for example when comparing brain morphology between cisgender- and 10 

transgender individuals. In this study, TIV bias in sex classification models applied to cis- and 11 

transgender individuals was systematically investigated by controlling for TIV either through 12 

featurewise confound removal or by matching the training samples for TIV. Our results 13 

provide strong evidence that models not biased by TIV can classify the sex of both cis- and 14 

transgender individuals with high accuracy, highlighting the importance of appropriate 15 

modeling to avoid bias in automated decision making.  16 

 17 

 18 

Introduction 19 

Machine Learning (ML) approaches have become increasingly popular in medical 20 

imaging, especially for neuroimaging data [1-3]. Previous studies applying ML approaches to 21 

neuroimaging data coming from individuals with mental and neurodegenerative disorders 22 

have provided valuable insights into the complex mechanisms underlying psychopathology 23 

[4-6]. The ability of ML models to make predictions about previously unseen individual 24 

subjects has expanded the field from population-based analyses to investigation of 25 



 3 

individualized biomarkers [5, 6]. However, it is important to ensure that predictions are not 1 

confounded by variables that are not part of the causal pathway of interest, but are associated 2 

with both the features the model was trained on and the target [6, 7], as results from 3 

confounded analyses might potentially lead to inaccurate and spurious conclusions [8, 9]. 4 

Using brain size bias in sex classification as an example, the present study examines which 5 

confound removal strategy is most suitable to achieve high classification accuracy while 6 

effectively removing brain size bias [8-10].  7 

ML approaches have been successfully applied to the study of sex differences in the 8 

brain by training a classifier to predict sex based on features derived from structural brain 9 

imaging data, e.g. regional grey matter volume (GMV). Such a sex classifier is expected to 10 

capture multivariate brain organizational patterns that differ between the sexes. High 11 

classification accuracies on out-of-sample data [11, 12] are then taken as evidence 12 

for qualitative sex differences in the brain [13, 14]. So far, studies using sex classification 13 

approaches based on structural brain imaging data achieved classification accuracies ranging 14 

from 82% up to 94% [11, 12, 15-17]. However, a sex classifier biased by brain size (measured 15 

as total intracranial volume, TIV [18, 19]) will result in predictions that are driven by TIV 16 

differences rather than actual sex differences in brain structure [9, 10, 20]. As a result, a TIV-17 

biased model will classify individuals with higher TIV as males and individuals with lower 18 

TIV as females, while making more mistakes for individuals with intermediate TIV.  19 

The use of such a TIV-biased sex classifier is particularly problematic when analyzing 20 

data of individuals for whom local and global brain structural alterations have been reported, 21 

such as those with "gender incongruence," where a person's sex and gender identity differ 22 

[21]. In the present paper, following the linguistic guidelines provided by the Professional 23 

Association of Transgender Health [22], the term “sex” is used to refer to the sex that a person 24 

was assigned at birth based on their anatomical sexual characteristics, whereas the term 25 

“gender (identity)” is used to denote the subjective identification of an individual as female, 26 
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male, or one of the other gender identities which might be also fluid or non-binary. While the 1 

coherence of sex and gender is termed cisgender for cisgender men and women (CM, CW), 2 

gender incongruent individuals are denoted as transgender men and women (TM, TW, [21]). 3 

To date, it is not yet fully understood if and to which extent local and global brain 4 

organization of transgender individuals is driven by factors matching their gender identity on 5 

top of those matching their sex. So far, studies contrasting groups of cisgender and 6 

transgender individuals reported regional GMV differences in the putamen [23], insula [16] as 7 

well as in surface areas, cortical and subcortical brain volumes [24]. Additionally, transgender 8 

individuals undergoing cross-sex hormone treatment (CHT) were reported to show structural 9 

alterations in the hypothalamus and the third ventricle [25]. Thus, there is some evidence 10 

indicating that transgender individuals display local brain volume differences [24, 26-28]. 11 

Extending the results of group studies contrasting cisgender and transgender individuals, sex 12 

classification approaches—building a classifier on cisgender individuals’ data and then 13 

applying it to transgender individuals—have reported reduced sex classification accuracies for 14 

transgender compared to cisgender samples (76.2% vs. 82.6% [17]; 61.5% vs. 93.2-94.9% 15 

[16]). Higher rates of misclassification of sex in transgender as opposed to cisgender 16 

individuals have been taken to indicate that transgender brains might differ from those typical 17 

for their sex, implying an interaction between sex and gender at the neuroanatomical level 18 

[16, 17, 29]. However, before such conclusions can be drawn, biases that can influence a sex 19 

classifier must be taken into account, particularly those related to TIV [18, 19]. It is crucial to 20 

be aware of the impact of local and global structural brain alterations that can lead to 21 

increases or decreases of TIV resulting in the TIV of transgender individuals falling between 22 

TIV of cisgender women and men [25]. Consequently, the predictions of a TIV-biased 23 

classifier might erroneously be interpreted as evidence for transgender brain organization to 24 

align with gender identity as has been reported before [16, 29]. 25 



 5 

Here, we investigate the impact of TIV bias by examining two approaches to control 1 

for confounding effects of TIV [10] in sex classification to evaluate which approach is most 2 

suited to account for TIV bias in the present sex classification analysis. We compare two 3 

statistically different approaches of controlling for TIV bias in comparison to a baseline 4 

model that does not account for the influence of TIV. For the first approach, we built debiased 5 

models through featurewise confound control by removing confounding effects of TIV during 6 

training (Figure 1, [20, 30]). In the second approach, we trained models on a stratified sample 7 

where women and men were matched for TIV. Model performance and TIV bias were 8 

assessed on hold-out samples of cisgender individuals to compare performance of the biased 9 

to the debiased models. We hypothesized that a TIV-biased model should achieve high 10 

performance but also exhibit a biased output pattern. In contrast, a model not biased by TIV 11 

will likely exhibit a drop in classification accuracy. However, importantly, misclassifications 12 

of such a model should be largely independent of TIV. In the final step, the debiased models 13 

were applied to application samples comprising both cisgender and transgender individuals to 14 

examine whether models without a TIV bias provide any evidence for an interaction of sex 15 

and gender influences on structural brain organization, as previously suggested [17].  16 

 17 

Results 18 

Classifiers employing Support Vector Machine (SVM) models with radial basis 19 

function kernel (rbf) were trained on whole-brain voxelwise GMV data of two large, non-20 

overlapping cisgender samples to classify sex assigned at birth. In the first sample, women 21 

and men were matched for age (AM sample) to create a sample with a natural occurring TIV-22 

distribution (Figure S1, Table S1). As a baseline, we trained the first model on this sample 23 

without any control for TIV bias (AM model), following the methodology of a previous study 24 

[16]. We then compared the baseline model to other models, which integrated two different 25 
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approaches for confound control in order to assess which approach successfully removes TIV 1 

bias while accurately classifying sex. For the first approach, a ML model was also trained on 2 

the AM sample, but additionally controlled for TIV bias by featurewise confound removal 3 

(AM+cr model), while the third model comprised stratification for TIV by training the model 4 

on a sample of women and men who were matched for both age and TIV (ATM; see Figure 5 

S1 and Table S1 for demographic details and TIV distribution of the samples). While the third 6 

model was trained on the ATM sample without additional TIV-control (ATM model) to 7 

evaluate stratification in itself, the fourth model employed a combination of both approaches 8 

to assess whether the addition of featurewise confound removal might further improve results 9 

(ATM+cr model, Figure 1). Subsequently, all models were calibrated to ensure that the 10 

prediction probabilities of the models match the respective class label (Figure S2-3, 11 

Supplementary Results, https://scikit-learn.org/stable/modules/calibration.html#calibration). 12 

To evaluate model performance on hold-out data, each sample (AM and ATM) was split into 13 

a training sample (80%) and a hold-out sample (20%). As the two approaches - featurewise 14 

confound removal and stratification by matching - might exhibit differences in model 15 

performance since they are based on different statistical processes [8], all four models were 16 

evaluated on both AM and ATM hold-out samples. This allowed for a thorough 17 

understanding of model behavior and evaluation of whether both approaches successfully 18 

remove TIV bias. Assessing model performance on the first sample (AM hold-out sample), 19 

which exhibits a naturally occurring TIV-distribution among women and men, enables a 20 

realistic evaluation of the model’s effectiveness in broader populations beyond those included 21 

in the present study. In turn, the ATM hold-out sample enables a more in-depth evaluation of 22 

the model performance, as it displays no significant difference in TIV between women and 23 

men. Consequently, an accurate model performance for the ATM hold-out sample indicates a 24 

non-TIV-biased model behavior as the model classifies a person’s sex based on other features 25 

than TIV, providing a “confound-free accuracy” [31]. Additionally, the models were tested on 26 

https://scikit-learn.org/stable/modules/calibration.html#calibration
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two independent application samples comprising transgender and cisgender individuals 1 

(sample A, sample B, see Figure S1 and Table S1 for demographic details and TIV 2 

distribution of the samples).  3 

 4 

***insert Figure 1 about here *** 5 

 6 

Evidence for TIV bias in the AM model  7 

The application of the AM model to the AM hold-out sample resulted in a high 8 

classification accuracy of 96.89% (Table 1, Table S2, Figure 2). Accordingly, the assigned 9 

probability of being classified as male (prediction probability) was higher for men than for 10 

women (Figure 3a). The comparison of TIV distributions revealed that men who were 11 

classified congruently with their sex as male had a significantly higher TIV than 12 

incongruently classified men (Figure 3b). Similarly, women classified incongruently with 13 

their sex as male had on average had a higher TIV than congruently classified women, even 14 

though this difference was not significant (details in Table 2).  15 

When applied to the ATM hold-out sample, the AM model resulted in a much lower 16 

classification accuracy of 79.19% (Table 1, Table S2), presumably as the model could not 17 

rely on TIV for classifying in the ATM sample. Still, we observed a similar pattern as above, 18 

with men having a higher prediction probability than women (Figure 3c), significantly higher 19 

TIV in sex congruently as opposed to incongruently classified men, and significantly lower 20 

TIV in sex congruently as opposed to incongruently classified women (Figure 3d, Table 2). 21 

Altogether, across both hold-out samples, this model tended to classify subjects with higher 22 

TIV as male and those with lower TIV as female, clearly indicating a brain size bias inherent 23 

in this model. 24 

 25 

Reducing TIV bias by confound removal  26 
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Featurewise control for TIV in the AM+cr model resulted in decreased classification 1 

accuracies both for the AM (61.80%) and the ATM (72.98%; further details in Figure 2, Table 2 

1 and Table S2) hold-out samples. In comparison to the AM model with no TIV control 3 

(Figure 3a) prediction probability displayed a much larger overlap between women and men 4 

(Figure 3e and 3g). Further evaluation did not reveal any evidence for a TIV bias — i.e. 5 

neither did sex congruently classified men show higher TIV than incongruently classified men 6 

nor did sex congruently classified women show lower TIV than incongruently classified 7 

women in both the AM (Figure 3f) and the ATM (Figure 3h, Table 2) hold-out samples.  8 

 9 

Reducing bias by matching the training sample for TIV  10 

The application of the two models built using TIV matched data with and without 11 

featurewise TIV control (ATM and ATM+cr model, respectively) to the AM hold-out sample 12 

resulted in similarly high classification accuracy (86.65% for ATM, 85.71% for ATM+cr 13 

model, details in Table 1 and Table S2), performing between accuracies achieved by the AM 14 

and the AM+cr model. Thus, for the ATM models, additional featurewise TIV control did not 15 

result in decreased model performance. This is further reflected in similar prediction 16 

probability distributions (Figure 3i, m), which were higher for men than for women. 17 

Likewise, the TIV of sex congruently and incongruently classified individuals did not differ 18 

significantly from each other both for women and for men (Figure 3j, n, Table 2). Application 19 

of these models to the ATM hold-out sample (details in Table 1, Table S2), displayed better 20 

performance (92.55%) than for the AM hold-out sample. Furthermore, prediction probability 21 

distributions showed a comparable (Figure 3k, o) but more pronounced pattern for the ATM 22 

hold-out sample. Again, when testing on the ATM hold-out sample, there was no difference 23 

between TIV of sex congruently and incongruently classified individuals both for the model 24 

without (Figure 3l, Table 2) and with additional confound removal (Figure 3p, Table 2).  25 
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Overall, the AM model achieved highest classification accuracy, but evaluation of the 1 

model output identified clear evidence for a TIV bias of the model. Reducing TIV-related 2 

variance by featurewise confound removal in the AM+cr model resulted in a less biased 3 

model, which also displayed a pronounced decrease in model performance, especially for the 4 

AM hold-out sample. Both models trained on the TIV balanced sample (ATM, ATM+cr 5 

model) did not show evidence of a TIV bias while still retaining high classification 6 

performance and appropriate calibration curves (Figure S2, S3), indicating that — at least for 7 

the present classification problem — training on a matched sample is more appropriate than 8 

featurewise confound removal. Thus, in the following, we will focus on comparing the 9 

performance of the biased AM model and the nonbiased ATM model on cisgender and 10 

transgender individuals in the application samples (sample A, sample B). Results for the 11 

AM+cr and ATM+cr models are provided in the Supplementary Results and Figure S4.  12 

 13 

***insert Figure 2 about here *** 14 
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***insert Figure 3 about here *** 16 

 17 

Biased performance of the AM model for cisgender and 18 

transgender individuals  19 

The application of the TIV-biased AM model resulted in an overall high performance 20 

of 88.70% for sample A, with an accuracy of 81.63% for cisgender and 93.43% for 21 

transgender individuals (detailed measures in Table 1 and S3). Likewise, for sample B, the 22 

model achieved high overall accuracy of 93.10% (Table 1 and S3) with an accuracy of 23 

90.24% for cisgender individuals and 95.65% for transgender individuals. Matching the high 24 

accuracies, the prediction probability showed a sex congruent pattern with higher prediction 25 
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probabilities for CM and TW (assigned male at birth) than for CW and TM (assigned female 1 

at birth) in both sample A (Figure 4a, c) and sample B (Figure 4e, g). A comparison of 2 

probability distributions of cis- and transgender individuals with the same sex revealed a trend 3 

for higher prediction probability for CW than for TM in sample A (t = 1.98, p = 0.0527, 4 

Cohen´s d = 0.53), which was significant in sample B (t = 3.58, p < 0.001, Cohen´s d = 1.01), 5 

matching the TIV-distributions showing higher TIV for CW than TM (Figure S1).  6 

The comparison of prediction probabilities for CM vs. TW was not significant in both 7 

samples (Sample A: t = -0.55, p = 0.5820, Cohen´s d = -0.15; Sample B: t = 1.07, p = 0.2922, 8 

Cohen´s d = 0.36), while the effect size indicated a trend of lower prediction probability for 9 

TW than CM. While TIV-distributions for sex congruently and incongruently classified 10 

individuals did not differ significantly (Table 3), sex congruently classified CW and TM had a 11 

lower TIV than those classified in a sex incongruent manner. Sex congruently classified CM 12 

and TW classified had a higher TIV than those classified sex incongruently (Figure 4b, d, f, 13 

h), indicating a similar bias of this model for both cisgender and transgender individuals.  14 

 15 

***insert Figure 4 about here *** 16 

 17 

Nonbiased ATM model: Similar performances for cisgender and 18 

transgender individuals  19 

The application of the ATM model to sample A displayed a high overall sex 20 

classification accuracy of 91.30% (91.84% for cisgender and 90.01% for transgender 21 

individuals). This model also performed accurately on sample B with an overall accuracy of 22 

93.10% (92.68% for cisgender and 93.48% for transgender individuals, details in Table 1 and 23 

S3). In both samples, the ATM model yielded sex congruent prediction probabilities for all 24 

four groups (Figure 4i, k, m, o). As opposed to the biased model, here, TM showed a trend of 25 

higher prediction probability than CW in Sample B (CW vs TM: t = -1.27, p = 0.2093, 26 



 11 

Cohen´s d = -0.36; Sample A: t 0 -0.47, p = 0.6425, Cohen´s d = -0.12;). This gender 1 

congruent trend was not observed for TW (CM vs. TW: Sample A: t = 0.31, p = 0.7577, 2 

Cohen´s d = 0.08; Sample B: t = -2.02, p = 0.0510, Cohen´s d = -0.68). The comparison of 3 

TIV distributions between sex congruently and incongruently classified individuals (Figure 4 

4j, l, n, p) did not reveal any significant differences (Table 3), neither for cisgender nor for 5 

transgender individuals, thus displaying no evidence for a TIV bias of this model. 6 

 7 

 8 

Discussion  9 

In this work, we systematically compared two confound removal approaches, 10 

featurewise confound removal and sample stratification, with the aim to train accurate sex 11 

classification models without a TIV bias. In order to directly compare our findings to those of 12 

a previous study, we implemented a ML pipeline that has demonstrated high levels of sex 13 

classification accuracy [16]. This pipeline consisted of principal component analysis (PCA) 14 

for dimensionality reduction, followed by an SVM model with rbf kernel for learning, but did 15 

not report any consideration of the confounding effects of TIV.  16 

 Consistent with previous results, the baseline AM model which does not consider 17 

confounding effects of TIV achieved near-perfect classification accuracy on the AM hold-out 18 

sample by accurately classifying men with high TIV as male and women with low TIV as 19 

female [11, 12, 16, 17], but relied on TIV as a proxy for sex, indicating a pronounced TIV 20 

bias (Figure 3b). The TIV bias was even more pronounced when the model was applied on 21 

the ATM hold-out sample presumably as the AM model was more likely to make mistakes for 22 

men with relatively lower TIV and women with relatively higher TIV. The pronounced TIV 23 

bias observed here is especially interesting, since the GMV data had already been scaled for 24 

TIV during preprocessing. Thus, our results align with previous claims that while the absolute 25 
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amount of tissue is corrected for individual TIV, such scaling does not fully remove TIV-1 

related variance ([32], http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). 2 

 For the AM+cr model, where a featurewise removal of TIV was performed on the AM 3 

data, the misclassifications of both women and men were not systematically related to TIV 4 

differences, indicating that this model was not biased by TIV. This suggests that the AM+cr 5 

model based its classifications on different information than the AM model did. Our results 6 

match the findings of previous studies [20, 30, 33, 34], reporting a decrease in accuracy for 7 

sex classification models controlling for TIV in contrast to TIV-biased models. This decrease 8 

is likely related to the removal of TIV-related variance during featurewise confound removal, 9 

which might have decreased the overall amount of information available for the AM+cr 10 

model in contrast to the AM model [20, 30, 33, 34]. This observation is in line with the results 11 

of a previous study suggesting that TIV alone contains enough information to classify sex at a 12 

similar level of accuracy as TIV-uncorrected GMV [34]. Considering that features in the AM 13 

sample can be assumed to contain more TIV-related variance than the ATM sample 14 

presumably explains why the drop in accuracy between the AM and the ATM+cr is less 15 

pronounced for the ATM hold-out sample than for the AM sample. Altogether, featurewise 16 

confound removal reduced TIV bias at the cost of classification accuracy. While a lack of bias 17 

in a model is desirable, so is high accuracy, suggesting that featurewise confound removal 18 

might not be the ideal approach to reduce TIV bias in structural sex classification. 19 

 In contrast to the models trained on the AM sample, both ATM trained models 20 

resulted in high and unbiased model performance for the AM as well as the ATM hold-out 21 

samples. The slightly higher accuracy for the ATM hold-out sample is likely due to the ATM 22 

hold-out sample better matching the characteristics of the ATM training sample, in particular 23 

with respect to TIV distribution, which is highly related to the target variable sex [30]. The 24 

better performance of the ATM and ATM+cr model on the ATM hold-out samples also 25 

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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supports the relevance of stratifying training and hold-out samples with respect to relevant 1 

variables that may interact with the target [35, 36].  2 

The comparison of TIV of sex congruently and incongruently classified women and 3 

men did not indicate a TIV bias, which is in line with a study proposing beforehand matching 4 

to be a more efficient approach than feature-wise confound removal in the statistical analysis 5 

[9]. However, another study argued against the matching of data, arguing that matching for 6 

specific characteristics creates a sample that is not representative of the whole population 7 

[20]. While we agree that the ATM sample does not strictly represent the TIV distribution of 8 

the population by rather comprising men with relatively low and women with relatively high 9 

TIV, the ensuing models achieved high classification accuracies, even when applied to the 10 

AM hold-out sample which reflects the natural TIV distribution. This indicates that the 11 

models themselves are not biased by training sample characteristics, especially the restricted 12 

TIV range. In fact, the models appear to correctly capture sex differences in a generalizable 13 

manner as exemplified by their performance on the two hold-out samples. However, we 14 

would like to emphasize that both confound removal approaches employed in the present 15 

study rely on different statistical operations which are anticipated to result in different 16 

outcomes and model performances [8]. Thus, high model performance of one approach does 17 

not imply the other one to behave in a similar manner. For this reason, testing which approach 18 

is most suited for an individual ML-problem is crucial. The present results demonstrated that 19 

matching women and men for TIV in the training sample provides an appropriate approach 20 

for creating unbiased and accurate sex classification models.  21 

 In contrast to previous studies [16, 17], we observed similarly high classification 22 

accuracies for cis- and transgender individuals regardless of whether the models were 23 

debiased or not. This discrepancy may partly be explained by the fact that TIV of the 24 

transgender individuals in the present samples matched TIV of cisgender subjects of the same 25 

sex rather than aligning with gender identity (Figure S1). Thus, even a biased classifier could 26 
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accurately classify transgender individuals. However, in samples where the TIV values for 1 

transgender individuals indeed fall in-between those of cisgender men and women, as 2 

reported previously [25] TIV-biased models would misclassify transgender individuals in 3 

accordance with their gender identity, which could explain prior findings [16]. Future studies 4 

should apply TIV-debiased models to additional datasets to help disentangle the complex 5 

interaction of sex, gender and the brain. It would be particularly interesting to apply our 6 

debiased models, which are available to other researchers 7 

(https://github.com/juaml/sex_prediction_vbm) to those datasets for which a reduction of sex 8 

classification accuracy for transgender participants has previously been reported [16, 29]. 9 

Another explanation for the discrepancy between present and previous results [16, 29], might 10 

be that our classifiers learnt fundamentally different models, e.g. employing different feature 11 

weights than those in previous studies, which in turn might be caused by differences in 12 

characteristics of the training samples and in turn different parameters learnt during model 13 

optimization. Beside the differences due to different training samples, other factors affecting 14 

ML models and respective results might relate to differences in age-distribution. Here, we not 15 

only balanced for sex but also employed an exact matching of men and women with regards 16 

to age which might have reduced variance in comparison to the training-samples of other 17 

studies [16, 29] leading to differences in the fundamental model and results. In addition to age 18 

in the training sample, the age distribution of the application sample could also play a role, 19 

due to age-related GMV decline. Thus, older TW could be misclassified due to age-related 20 

GMV changes.  21 

 The present models were trained on a diverse collection of samples, ensuring a 22 

heterogeneity in several variables, such as age, scanning characteristics, and nationality. 23 

Likewise, as application samples we used two completely independent datasets comprising 24 

TW and TM. To our knowledge, previous studies have focused on test samples only 25 

comprising TW when applying a sex classifier trained on structural data of cisgender 26 

https://github.com/juaml/sex_prediction_vbm
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individuals to transgender individuals [16, 29], limiting conclusions to TW rather than 1 

transgender individuals in general. Notably, one study employing data of both TW and TM 2 

did not report significantly lower classification accuracy for transgender data [17], which is in 3 

line with the present results. While we did not observe decreased sex classification accuracy 4 

for transgender individuals, this cannot be taken as a proof of absence of such structural brain 5 

differences, which might be revealed by the investigation of different sets of brain features or 6 

different analysis approaches. 7 

 Future studies can benefit by incorporating confound control approaches within 8 

interpretable ML pipelines that can provide insight into how many and which brain regions 9 

are most relevant for sex differences. Those insights can shed further light on which features 10 

are more common in men, women or both, thereby carrying implications for hypotheses as the 11 

mosaic of the human brain [37], which exceeds the scope of the current study design. 12 

Methodologically sound studies, including both sex and gender aspects, are needed to 13 

improve our understanding of sex and gender-related differences in behavior and prevalence 14 

rates of mental disorders to advance development of sex-specific treatments [38, 39]. Viewing 15 

patients through the lens of sex and gender is an essential step towards personalized care and 16 

individualized medicine [6, 40]. Therefore, to achieve the ultimate goal of neuroimaging-17 

based precision medicine, the present study takes a first step towards exploring appropriate 18 

confound removal in ML-based sex classification [41]. Although each ML analysis must 19 

consider confounds specific to the research question at hand, TIV is an important confound to 20 

consider in neuroimaging data in general, as also shown by others [9, 18, 33, 34, 42]. In 21 

addition to its application in sex classification analyses, as demonstrated here, appropriate 22 

confound control should also be considered for other ML applications. We, therefore, 23 

recommend that researchers should investigate which confound removal method is 24 

appropriate for their ML analysis. 25 

 26 
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Conclusion 1 

 Our findings demonstrate that stratification via TIV-matching effectively eliminates 2 

TIV bias while achieving high levels of classification accuracy in a sex classification analysis 3 

using structural brain imaging features. Contrary to previous results [16], our sex 4 

classification model demonstrated comparable levels of classification accuracy for both 5 

cisgender and transgender individuals. Our study emphasizes the importance of removing TIV 6 

bias appropriately in sex classification tasks to prevent incorrect interpretations. In general, 7 

confounding is a common issue in many ML-based modeling tasks, albeit with varying 8 

confounds and levels of confounding effects. Therefore, future studies utilizing ML 9 

approaches on brain imaging data should diligently examine for biases and implement 10 

appropriate confound control measures. 11 

 12 

Materials and Methods 13 

Data 14 

Data pool for model training and evaluation 15 

To ensure a heterogeneous sample for training the classifiers, we combined data from 16 

10 large cohorts into one data pool of structural magnetic resonance imaging (MRI) images 17 

from subjects differing in nationality, imaging parameters and age range. Supplementary 18 

Table S4 gives further details on the composition of the data pool, and details of the MRI data 19 

acquisition parameters can be found in the Supplementary Material. We only included 20 

subjects aged between 18 and 65 years with no indication of any psychiatric disorder, 21 

resulting in a total N of 5557 subjects. It is important to note, that the majority of large 22 

datasets, which have been employed for sex classification studies so far, likely report sex 23 

based on “presented sex”, i.e. the name and outer appearance of participants or on self-24 



 17 

reported sex without explicitly collecting information on gender identity. We assume that 1 

among subjects not describing themselves as transgender, self-reported gender identity is 2 

equivalent to sex assigned at birth, while acknowledging that this match may neither be 3 

perfect nor binary. 4 

Sixteen subjects whose TIV values differed more than three standard deviations from 5 

the mean TIV of the data pool were excluded as outliers. Then, two non-overlapping samples 6 

were extracted from the data pool. In the first sample (AM), women and men were matched 7 

for age to control for age-related GMV decline [43-46]. In the second sample (ATM), women 8 

and men were additionally matched for TIV. Possible differences between samples and sites 9 

in scanning acquisition were controlled for by including similar numbers of subjects from the 10 

different samples in the AM and ATM-sample respectively. Both the AM and ATM sample 11 

comprised 276 subjects from 1000Brains, 146 subjects from Cam-CAN, 168 subjects from 12 

CoRR, 50 subjects from DLBS, 94 subjects from eNKI, 192 subjects from GOBS, 396 13 

subjects from HCP, 96 subjects from IXI, 76 subjects from OASIS3, and 120 subjects from 14 

PNC. Each sample was split into a training (80%) and a hold-out sample (20%). 15 

 16 

Age-matched (AM) sample 17 

For the AM sample (N = 1614, 807 women), women and men were matched for age 18 

within each site (including multiple sites within one sample) by including a male counterpart 19 

from the same site whose age differed by no more than one year for each female subject. The 20 

age range in this sample was 18 – 65 years (M = 37.96, SD = 15.28). Further detailed 21 

information can be found in Table S1, and a plot of the TIV distribution of women and men is 22 

displayed in Figure S1. There was no significant difference in age between women and men (t 23 

= 0.01, p = 0.99); however, the sexes differed significantly with respect to TIV (t = -61.06, p 24 

< 0.001). Splitting the sample into training (80%) and hold-out samples (20%) resulted in 25 

1292 subjects (646 women) for training and 322 subjects (161 women) for testing. The 26 
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training and hold-out samples did not differ with respect to age (t = 0.98, p = 0.33) or TIV (t = 1 

-0.11, p = 0.91). The age difference between sexes remained nonsignificant within both the 2 

training (t = -0.00, p = 0.99) and the hold-out sample (t = 0.03, p = 0.97), whereas the TIV 3 

difference was significant for both samples (training: t = -54.79, p < 0.001, hold-out: t = -4 

26.90, p < 0.001). 5 

 6 

Age-TIV-matched (ATM) sample 7 

For the ATM sample (N = 1614, 807 women), women and men were matched for age 8 

and TIV within each site. For each female subject, a male counterpart was included whose 9 

age differed by no more than one year and whose TIV differed by no more than 3%. The age 10 

range in this sample comprised 18-65 years (M = 38.15, SD = 15.35). More detailed 11 

information is displayed in Table S1, and the distribution of TIV for women and men in this 12 

sample is shown in Figure S1. In this sample, women and men did not differ significantly in 13 

age (t = 0.01, p = 0.99), or in TIV (t = -1.25, p = 0.21). The ATM sample was also divided 14 

into 80% for training and 20% hold-out for testing, again resulting in 1292 subjects (646 15 

women) for training and 322 subjects (161 women) for testing. The training and hold-out 16 

samples did not differ with respect to age (t = 0.02, p = 0.98) or TIV (t = -0.53, p = 0.60). 17 

Additionally, there was no significant difference between women and men in age or TIV in 18 

the training (age: t = 0.01, p = 0.99; TIV: t = -0.99, p = 0.32) or hold-out sample (age: t = -19 

0.01, p = 0.99; TIV: t = -0.83, p = 0.41). 20 

 21 

Application samples 22 

The first application sample (Sample A) was acquired in Aachen (Germany). This data 23 

set consisted of 115 individuals (24 CM, 25 CW, 33 TM, 33 TW). All cisgender participants 24 

were recruited via a public announcement around Aachen, whereas TM and TW were 25 
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recruited in self-help groups and at the Department of Gynaecological Endocrinology and 1 

Reproductive Medicine of the RWTH Aachen University Hospital, Germany. All cisgender 2 

and transgender subjects in this sample reported no presence of neurological disorders, other 3 

medical conditions affecting the brain metabolism or first-degree relatives with a history of 4 

mental disorders. The Ethics Committee of the Medical Faculty of the RWTH Aachen 5 

University approved the study (EK 088/09, [23]). At the time of MRI measurement, 15 TM 6 

and 16 TW each were receiving hormone treatment. The age of the participants ranged from 7 

18 to 61 years (M = 30.38, SD = 11.03). More detailed demographic information can be found 8 

in Table S1 and Figure S1. 9 

The second application sample (Sample B) consisted of an open-source dataset 10 

acquired in Barcelona, available via (https://data.mendeley.com/datasets/hjmfrv6vmg/2, [47-11 

49]). The data set contained 87 subjects (19 CM, 22 CW, 29 TM, 17 TW) with an age range 12 

of 17 to 39 years (M = 22.23, SD = 4.97). More detailed information related to age and TIV in 13 

all four groups can be found in Table S1 and Figure S1, though no information were available 14 

regarding the status of potential hormone treatment.  15 

Model applications were evaluated on both application samples separately to further 16 

understand the model behavior on samples with differing characteristics (Table S1). 17 

The data usage of the second application sample as well as the data for the AM and 18 

ATM-sample was approved by the Ethics Committee of the Medical Faculty of the Heinrich-19 

Heine University Düsseldorf (2018-317, 4039, 4096, 5193). All subjects were participants in 20 

research projects approved by a local Institutional Review Board and provided written 21 

informed consent and all experiments were performed in accordance with relevant guidelines 22 

and regulations. 23 

 24 

Preprocessing of structural data 25 

https://data.mendeley.com/datasets/hjmfrv6vmg/2
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Structural T1-weighted MR images of all datasets were preprocessed using the 1 

Computational Anatomy Toolbox (CAT12.5 r1363, http://www.neuro.uni-jena.de/cat12/) in 2 

SPM (r6685) running under Matlab 9.0. After initial denoising (spatial-adaptive Non-Local 3 

Means), the pipeline included spatial registration, bias-correction, skull-striping and 4 

segmentation by an adaptive maximum a posteriori approach [50] with using a partial volume 5 

model [51]. Subsequently, an optimized version of the Geodesic Shooting Algorithm [52] was 6 

applied for normalization to MNI space and the resulting Jacobians were used for non-linear 7 

only modulation of grey matter segments, before final resampling to a 3x3x3 mm resolution 8 

via FSL. The non-linear only modulated images (m0wp1) were globally scaled for TIV 9 

internally with an approximation of TIV, i.e. every voxel was scaled by the relative linear 10 

transformation to the MNI152 template. Consequently, while TIV-related variance was likely 11 

not fully removed from the data, the GMV data included in the analyses were not fully TIV-12 

naive.  13 

 14 

Predictive modelling 15 

Whole-brain voxelwise GMV were used as features for training the classifiers, 16 

resulting in 77779 brain features (voxels) per subject. For each of the AM and the ATM 17 

training samples, classifiers were trained to predict sex with and without featurewise removal 18 

of TIV-related variance, resulting in the four different models: AM, AM+cr, ATM and 19 

ATM+cr model (Figure 1). For all four models, we employed a SVM classifier with rbf 20 

kernel [53] using Julearn (https://juaml.github.io/julearn). Before training the classifier, PCA 21 

was performed to reduce the dimensionality of the data [16]. The maximum number of 22 

components (n = 1292, number of subjects in the training sample) was retained. Where 23 

applicable, for featurewise TIV control TIV-related variance was removed after 24 

dimensionality reduction by subtracting the fitted values of each feature in a cross-validation 25 

(CV)-consistent manner to avoid data leakage [20, 30]. Stratified 10-fold CV was performed 26 

http://www.neuro.uni-jena.de/cat12/
https://juaml.github.io/julearn
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to assess generalization performance. The two hyperparameters, C (1 – 1e8, log-uniform) and 1 

gamma (1e-7 – 1, log-uniform), were tuned via Bayesian Hyperparameter Optimization with 2 

250 iterations within a 5-fold CV inner loop following the analysis employed in a previous 3 

study [16]. The best performing combination of hyperparameters from the Bayesian 4 

Hyperparameter Optimization was used to train the final model on the full sample (details 5 

depicted in Supplementary Material). 6 

The four final models were used to obtain predictions for the AM and ATM hold-out 7 

samples and both application samples (Figure 1). Before application of the models to the 8 

hold-out samples, we ensured that the models were calibrated (https://scikit-9 

learn.org/stable/modules/calibration.html#calibration) by assessing probabilities of classifying 10 

an individual into a respective class in relation to the actual labels of the individuals 11 

(Supplementary Figure S2-3, Supplementary Results). These calibrations allow for 12 

checking whether the models gave accurate estimates of class probabilities and support 13 

probability predictions. To distinguish between the predicted and actual label of the sex a 14 

person identifies with, we refer to the terms “male” and “female” as predicted labels of an ML 15 

model whereas we refer to “men” and “women” as actual (true) label of an individual. 16 

To further explore model behaviour, we compared the TIV-distributions of individuals 17 

classified in accordance with their sex and those who were not, by use of violin plots [54] and 18 

by Wilcoxon rank sum tests. Due to the amount of comparisons conducted here, we chose a 19 

conservative significance level of 𝝰𝝰 = 0.005 with effect sizes estimated accordingly [55]. To 20 

examine whether models were confounded by total GMV, we first tested whether GMV 21 

differed between the sexes in the two samples. In the AM sample, similarly to TIV, sexes 22 

exhibited significant differences in total GMV (two-sample t-test; t = -31.21, p < 0.001). 23 

However, matching for TIV in the ATM sample also resulted in a non-significant difference 24 

in total GMV (t = 0.85, p = 0.40), indicating that matching on TIV was effective also for 25 

GMV. We then compared the GMV distributions of individuals classified correctly in 26 

https://scikit-learn.org/stable/modules/calibration.html#calibration
https://scikit-learn.org/stable/modules/calibration.html#calibration
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accordance with their sex and those who were misclassified (Table S5, S6) with the same 1 

conservative significance level as for TIV-differences of 𝝰𝝰 = 0.005. Further details can be 2 

found in the Supplementary Results and Tables S5 and S6. To assess potential differences 3 

between cis- and transgender individuals in prediction probabilities, we statistically compared 4 

probabilities of CM and TW as well as CW and TM. A power-analysis for these comparisons 5 

was conducted using G*Power to compute sample size required for effect sizes as found in 6 

previous work with a 𝝰𝝰–level of 0.05 and power-level of 0.8 [29, 56, 57]. 7 

 8 
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Figure legends 1 

 2 
Figure 1. Analysis pipeline. Workflow of the sex classification analysis 3 
 4 
Figure 2. Sex classification accuracy. Accuracy values of the four different models for the 5 
CV-folds and applied to the AM and ATM hold-out sample. 6 
 7 
Figure 3. Association between prediction probability and TIV. Prediction probability (a, c, 8 
e, g, i, k, m, o) and TIV distribution (b, d, f, h, j, l, n, p) of sex congruently and incongruently 9 
classified women (red) and men (blue) of all four models applied to the AM and ATM hold-10 
out sample. (W/f: women classified as female; W/m: women classified as male; M/m: men 11 
classified as male; M/f: men classified as female) 12 
 13 
Figure 4. Association between prediction probability and TIV for the AM and ATM 14 
models in the two application samples. The upper row (a-h) shows the prediction 15 
probability (a, c, e, g) and TIV distribution (b, d, f, h) of sex congruently and incongruently 16 
classified CM, CW, TM and TW in the AM model in sample A and B. The bottom row (i-p) 17 
shows the prediction probability (i, k, m, o) and TIV distribution (j, l, n, p) of sex congruently 18 
and incongruently classified CM, CW, TM and TW in the ATM model in sample A and B. 19 
(CW/f: CW classified as female; CW/m: CW classified as male; CM/m: CM classified as 20 
male; CM/f: CM classified as female; TM/f: TM classified as female; TM/m: TM classified as 21 
male; TW/m: TW classified as male; TW/f: TW classified as female) 22 
 23 
 24 
 25 
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 Table 1. Performance of models.  1 
 2 

 Model performance for the AM hold-out sample 
 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.9503 0.7329 0.8820 0.8571 
Specificity: 0.9876 0.5031 0.8509 0.8571 

F1: 0.9684 0.6574 0.8685 0.8571 
BA*: 0.9689 0.6180 0.8665 0.8571 

 
 Model performance for the ATM hold-out sample 
 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.7453 0.8323 0.9255 0.9193 
Specificity: 0.8385 0.6273 0.9255 0.9317 

F1: 0.7818 0.7549 0.9255 0.9250 
BA*: 0.7919 0.7298 0.9255 0.9255 

 
 Model performance for sample A 
 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.9474 0.7895 1 0.9474 
Specificity: 0.8276 0.7241 0.8276 0.8448 

F1: 0.8926 0.7627 0.9194 0.9000 
BA*: 0.8875 0.7568 0.9138 0.8961 

 
 Model performance for sample B 
 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.8889 0.8333 0.9722 0.8889 
Specificity: 0.9608 0.5882 0.9020 0.9020 

F1: 0.9143 0.6897 0.9211 0.8767 
BA*: 0.9248 0.7108 0.9371 0.8954 

 3 
Model performance of all models applied to the hold-out and application samples. 4 
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Table 2. Wilcoxon rank sum tests of the hold-out samples.  1 
 2 

 TIV women classified as female vs. classified as male TIV men classified as male vs. classified as female 
 AM hold-out sample 

AM model T = 12722, z = -2.3885, p = 0.0169, η2 = 0.0354 T = 12829, z = 3.3879, p < 0.001, η2 = 0.0713 
AM+cr model T = 7514, z = 3.2204, p = 0.0013, η2 = 0.0644 T = 8858, z = -2.6727, p = 0.0075, η2 = 0.0444 
ATM model T = 11004, z = -0.4390, p = 0.6606, η2 = 0.0012 T = 11507, z = 0.0236, p = 0.9812, η2 < 0.001 

ATM+cr model T = 11236, z = 0.2778, p = 0.7812, η2 < 0.001 T = 11284, z = 0.5097, p = 0.6103, η2 = 0.0016 
 

 ATM hold-out sample 
AM model T = 9908, z = -4.7156, p < 0.001, η2 = 0.1381 T = 11325, z = 6.2257, p < 0.001, η2 = 0.2407 

AM+cr model T = 8425, z = 0.8513, p = 0.3946, η2 = 0.0045 T = 10341, z = -2.3190, p = 0.0204, η2 = 0.0334 
ATM model T = 12284, z = 1.3806, p = 0.1674, η2 = 0.0118 T = 12239, z = 1.0910, p = 0.2753, η2 = 0.0074 

ATM+cr model T = 12403, z = 1.6918, p = 0.0907, η2 = 0.0178 T = 12130, z = 0.8780, p = 0.3800, η2 = 0.0048 
  3 

Comparison of individuals classified as female vs. male (Wilcoxon rank sum tests) for the AM and ATM sample. 4 
 5 

  6 
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Table 3. Wilcoxon rank sum tests of the application samples.  1 
 2 

a) TIV CW classified as female vs. classified as male TIV CM classified as male vs. classified as female 
AM model T = 203, z = -1.8459, p = 0.0649, η2 = 0.1363 T = 286, z = 1.0967, p = 0.2728, η2 = 0.0501 

AM+cr model T = 249, z = 0.8776, p = 0.3802, η2 = 0.0308 T = 236, z = -1.0457, p = 0.2957, η2 = 0.0456 
ATM model T = 268, z = -0.3336, p = 0.7387, η2 = 0.0045 no CM classified as female 

ATM+cr model T = 268, z = -0.3336, p = 0.7387, η2 = 0.0045 T = 294, z = 0.8668, p = 0.3861, η2 = 0.0313 
   
 TIV TM classified as female vs. classified as male TIV TW classified as male vs. classified as female 

AM model T = 472, z = -2.3483, p = 0.0189, η2 = 0.1671 T = 558, z = 1.4178, p = 0.1563, η2 = 0.0609 
AM+cr model T = 477, z = 2.7689, p = 0.0056, η2 = 0.2323 T = 442, z = 0.6931, p = 0.4882, η2 = 0.0146 
ATM model T = 499, z = 1.8437, p = 0.0652, η2 = 0.1030 no TW classified as female 

ATM+cr model T = 506, z = 1.4812, p = 0.1386, η2 = 0.0665 T = 532, z = 0.3395, p = 0.7342, η2 = 0.0035 
 

b) TIV CW classified as female vs. classified as male TIV CM classified as male vs. classified as female 
AM model T = 224, z = -0.6281, p = 0.5299, η2 = 0.0179 T = 186, z = 2.0591, p = 0.0395, η2 = 0.2231 

AM+cr model T = 199, z = 1.8328, p = 0.0668, η2 = 0.1527 T = 159, z = -1.3948, p = 0.1631, η2 = 0.1024 
ATM model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 178, z = -0.2739, p = 0.7842, η2 = 0.0039 

ATM+cr model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 138, z = -1.1500, p = 0.2501, η2 = 0.0696 
   
 TIV TM classified as female vs. classified as male TIV TW classified as male vs. classified as female 

AM model no TM classified as male T = 145, z = 1.4162, p = 0.1567, η2 = 0.1180 
AM+cr model T = 289, z = 2.7714, p = 0.0056, η2 = 0.2648 T = 115, z = -0.1698, p = 0.8651, η2 = 0.0017 
ATM model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female 

ATM+cr model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female 
 3 
Comparison of individuals classified as female vs. male (Wilcoxon rank sum tests) for application sample A (a) and sample (b). 4 

 5 
 6 
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