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Abstract

Nucleon form factors at large momentum transfer are important for understand-
ing the transition from nonperturbative to perturbative QCD and have been the
focus of experiment and phenomenology. We calculate proton and neutron elec-
tromagnetic form factors Gg,ar (Q?) from first principles using nonperturbative
methods of lattice QCD. We have accumulated large Monte Carlo statistics to
study form factors up to momentum transfer Q% < 8 GeV? with a range of lat-
tice spacings as well as quark masses that approach the physical point. In this
paper, results of initial analyses are presented and compared to experiment, and
potential sources of systematic uncertainty are discussed.
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1 Introduction

Behavior of nucleon electromagnetic form factors Ggp n, Gurpn(Q?) at high momen-
tum transfer Q% ~ 5...10GeV? have implications for understanding and improving
models of nucleon structure. Models involving vector meson dominance, chiral soli-
tons, a pion cloud, and relativistic constituent quarks have been employed to predict
form factor behavior at large Q2. Generally, while some models may describe data
for the four nucleon form factors, their predictions differ in the region where data
are unavailable (see, e.g., Ref. [1] for a review). Studies of nucleon form factors
using Dyson-Schwinger and Faddeev equations have demonstrated the significance
of diquark correlations for the nucleon electromagnetic structure at high momentum
transfer [2]. In particular, the zero crossing in the electric Sachs form factors depend on
quark correlations in Faddeev’s amplitude of the nucleon, thus data from experiment or
nonperturbative lattice QCD calculations can be used to determine their magnitude.
The experimental program to determine nucleon form factors up to Q% ~ 18 GeV? is
well underway [3-7], and the first results have been published for the proton magnetic
form factor Gz, (Q?) for Q2 up to ~ 16 GeV? [8]. This calls for ab-initio theoretical
calculations of nucleon form factors with rigorous control of systematic effects, which
is possible using modern lattice QCD methods.

Until recently, studies of nucleon form factors on a lattice have been limited by
Q? < 1...2GeV?. One notable exception is the calculation of the GEp/Guyp ratio
using Feynman-Hellman method [9]. Lattice calculations involving hadrons with large
momentum |p] 2 my are challenging for several reasons. First, Monte Carlo fluctu-
ations of lattice hadron correlators are governed by the energy of the state [10]. The
signal-to-noise ratio for the nucleon is expected to decrease o exp [~ (En (p) — Smx)7]
with Euclidean time 7, making high-momentum calculations especially “noisy”. At the
same time, excited states of the nucleon, which are expected to introduce large system-
atic uncertainties, are less suppressed by Euclidean time evolution o exp [fAEN (ﬁ)T]
as the energy gap AE(P) = Enexc(P) — En(pP) shrinks with increasing relativis-
tic nucleon momentum |p]. Both these challenges are best adressed by choosing the
Breit frame on a lattice, so that the initial and final momenta of the nucleon are
equal to |p\)| = %\/@ For example, momentum transfer Q7 ~ 10GeV? requires
nucleon momentum p; = 1.6 GeV, which reduces the energy gap AEN(0) = 0.5 GeV
to En(p1) =~ 0.3 GeV. Therefore, very large Monte Carlo statistics combined with rig-
orous analysis of excited states contaminations become absolutely necessary to obtain
credible results.

Such large-statistics calculations have been pursued for a few years, with results
previously reported in Refs. [11, 12]. These calculations have been performed with
Ny = 2+ 1 (light and strange) dynamical quarks with the clover-improved Wil-
son fermion action with lattice spacing a ~ 0.09fm. Two values of the pion masses
my, ~ 280 and 170 MeV used in the calculations allowed to check for light quark
mass dependence of the results. Recently, we have extended our work to a finer lattice
spacing a ~ 0.073 fm (“E5” ensemble), which is absolutely essential to understand dis-
cretization effects, a likely source of systematic errors in calculations involving large
momenta. In this paper, we report results obtained on these finer lattices, as well as
those from previous coarser lattices but with substantially increased statistics. Our



current results rely on multi-state fits to to assess systematic effects from excited
states.

2 Methods

We have performed large-statistics calculations on four ensembles of lattice gauge
fields. The summary of our accumulated statistics is shown in Fig. 1 and Tab. 1.
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Fig. 1 Lattice ensembles and statistics accumulated for each value of a and my. The circle areas
are proportional to the number of samples. Lighter pion-mass calculations (D5) require significantly
more statistics.

Table 1 Summary of ensembles, kinematics, and statistics.

ens lat a [fm] mx [MeV] | Nconf stat ts% t;?; gg‘“‘;’z‘
c13 323 x 96 0.127 285 210 20,160 6...10 1.14 8.3
D5 323 x 64 0.094 278 1346 86,144 6...12 1.13 10.9
D6 483 x 96 0.091 166 2040 261,120 | 6...12 1.09 8.0
E5 483 x 128 0.073 272 2080 266,240 | 7...14 1.02 8.0

In order to obtain nucleon form factors, we calculate nucleon matrix elements of
the quark vector current with large-momentum nucleons in the in- and out-states,

CNVq“N(ﬁv i tsep, tins) = Z TPt (N (7 tsep) (37" ) 2,805 N(0)) (1)

¥,z

where N = ¢®¢[a9T Cy5d®]a is the nucleon interpolating field on a lattice constructed
with “momentum-smeared” quark fields ¢ to improve their overlap with the ground
state of the boosted nucleon [13]. Nucleon matrix elements are extracted from nucleon-
current three-point correlation functions using well-established methods of lattice
QCD (see, e.g. Ref. [14]). Wick contractions of lattice quark fields generate two types
of diagrams: quark-connected and quark-disconnected. The latter have lattice quark



“loops” that are connected to the valence quark lines only by the gluons and are more
difficult to compute. Their contributions to nucleon form factors at Q% < 1.2 GeV?
were found small (< 1%) [15], but remain to be explored at higher momenta; these
contributions are omitted in the current work.
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Fig. 2 Nucleon effective energies and ground-state fits computed on ensembles E5 (left) and D6
(right).
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Fig. 3 Dependence of nucleon ground-state energies on momentum computed on ensembles E5 (left)
and D6 (right).

The nucleon correlators become dominated with the ground state C(t) =
(N(t)...N(0)) o e E~t as the Euclidean time 7 is inscreased. As expected, there are
substantial contributions from nucleon excited states. Although more than one excited
state is expected to contribute, the data are not precise enough to constrain more than
one, especially at large momenta. Therefore, we impose a simple two-state model on



— 5 = 0.158

0.30
0.25 : T
= 1
9 0.20
<
0.15 "
0.10 ImT*%,. (—400|V,| —100) —04 ReT*%,. (~400|Vy| - 100) 0.0 ReT'S,.(~400[V,|—100)
(aQ)? = p.4164 P =031 —0.20{aQ)* = 0.4164 (aQ)%g 04164 P =071

0.14
—0.22

—0.24 0.12

0.10

0.06 IT+¥,. (~400[V,[000) —0.28 RT3, (~400[V,000)

(aQ)? =p7974 P=05531 _( 19007 =0.7974 =10 0.050 @7 =p7o7a P = 0.9667

RéTS,. (~400[V,|000)

0.018

0.045
_0.016 g
= —0.14
= . 0.040
z

—0.16
0.035
0[V,[100) ReTS,. (~400[V,[100
0008 o)} p=0299 - [aQF = 13951 7= 0423 p=0.7207

0002
= —0.08
S)
= 0.001

—0.09

TS, (—400|V,[200) RET*3,, (—400|V,|200) RT3, (—400[V{200

[aQ)? = 1.8628 p=0315 [aQ)? = 1.8628 P =027 (aQ)? = 1.8628 p=0.7378

=
S
z
0.002 ImT* ~0055 + +
0. WT*S,. (—400[V,|300) ReT*S,, (—400[V,[300 0.004 ReT*S,., (—400[V(/300)
p=0.0000 000807 =21674 p=o0g0173 10
0.006 0.8
= 0.6
s 0.004
200350 0.4
0.002
0.2
0.000 o0
2 1 6 3 2 I 6 3
TO TO0

Fig. 4 Fits to the nucleon three-point functions (3) for the D5 ensemble. The colored bands show fits
to Eq. (3), the dark-gray bands are the ground-state values A/ from these fits, and the light-gray
bands are overdetermined fits of these matrix elements to the form factors Fy 2(Q?).

lattice data

(N(BN(0)) ~ CemProt 4 Cem Pt (2)
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3)

+Ao/lco/cle—E}\,O(t—T)—ENlT +Alllcllcle—Ej\,l(t—T)—ENﬂ'
to extract ground-state nucleon energies E](\/,)0 and momentum-dependent matrix ele-
ments of nucleon operators Cyy = (vac|N|N(5"))) and vector current density Agq =
(N(p)|J|N(p)). The fits and the ground-state energies from the former are shown
in Fig. 2, together with effective-energy estimators ESf(t) = Llog [C(t)/C(t + a)].
The dispersion relation on a lattice E?(p?) shown in Fig. 3 indicates that discretiza-
tion effects in the spectrum of moving nucleons are under control. A representative
set of fits of Eq. 3 to three-point proton nucleon-current correlator data from the D5
ensemble is shown in Fig. 4. The ground-state matrix elements Aqo from fits (3) are
decomposed into form factors Ff’z separately for each flavor q. The data points in
Fig. 4 show correlator ratios estimating nucleon matrix elements for ¢ — oo, and the
bands of the respective color bands show fits to Eqs. (3). The dark-gray bands show
ground-state matrix elements Ag/g, and the light-gray bands show the overdetermined

fits of these matrix elements to the form factor values F 2(Q?).

3 Results
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Fig. 5 Comparison of lattice results for Dirac F (left) and Pauli F» (right) form factors of the
proton (top) and the neutron (bottom) to phenomenological fits of experimental data [16] (dashed
curves). Disconnected quark contractions are neglected.

Individual proton and neutron form factors are shown in Fig. 5, similarly compared
to phenomenological fits. Although the lattice results have qualitatively similar Q2
behavior, they overshoot the phenomenological fits by a factor of (2...2.5). This
substantial difference may be due to discretization effects. Without a calculation on a



smaller lattice spacing, these effects are difficult to assess. A detailed study of O(a)-
improved current operators and calculations at different lattice spacings are required
to control this source of systematic effects.
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Fig. 6 Ratio of proton Pauli and Dirac form factors Q% F,(Q?)/F1,(Q?), compared to phenomeno-
logical fits of experimental data [16] (dashed curves). Disconnected quark contractions are neglected.
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Fig. 7 Ratio of proton (left) and neutron (right) Sachs form factors uGg/Gpr, compared to phe-
nomenological fits of experimental data [16] and quark+diquark Faddeev equation calculations [2].
Disconnected quark contractions are neglected.

In Figure 6, the ratio of proton Pauli and Dirac form factors is shown. In pertur-

_ . . L log®(Q?/A?)
bative QCD calculations, this ratio is expected to scale as F, /I, ~ =2=5z= [17].



The lattice data are compared with the phenomenological fits [16] based on proton
experimental data available at Q? < 8.5 GeV? (shown with black symbols). Although
the general trend in the data is compatible with the logarithmic growth, the current
precision is insufficient to validate it.

The ratios of Sachs electric and magnetic form factors for the proton and the
neutron are shown in Figs. 7, and again compared to the phenomenological fits [16] and
experimental data, as well as calculations using quark+diquark Faddeev equations [2].
The agreement between lattice data and experiment (phenomenology) for the ratios
in the proton case is reassuring, although better precision is certainly required in light
of upcoming new experiments at JLab. In the case of the neutron, the Gg,, /Gy, Tatio
is below the experimental values, although it demonstrates qualitative agreement in
its Q2 behavior. Since the neutron is neutral, its electric form factor may be much
more sensitive to the systematic effects in this calculation, in particular the omission
of disconnected quark contractions and unphysical heavy pion masses. We observe,
however, that at high momenta where the results should depend less on the masses of
the light quarks, the lattice data agrees with extrapolations from phenomenological
fits. Better motivated comparisons will be possible with future neutron form factor
data with extended Q2 range.

4 1.5
Q' Foy
3 4
1.0
2
0.5
11
0 0.0
4 1.5
(—0.75) - Q4F2d == [Alberico]
| —4— D5 (m, = 278 MeV, a=0.094 fm)
3 1.01 —#— E5 (m, = 272 MeV, a=0.073 fm)
’ —4— D6 (my = 166 MeV, a=0.091 fn)
2 4
051 /W‘\
L T T R R =y
0 ’ === 0.0 ’
0 2 4 6 8 10 0 2 4 6 8 10
Q* [GeV?] Q* [GeV?]

Fig. 8 Contributions of u and d quarks to Dirac F; (left) and Pauli F> (right) nucleon form factors,
scaled by Q*. The scales are adjusted for comparison to figures in Ref. [18]. Disconnected quark con-
tractions are neglected. The phenomenological fits to experimental data (dashed curves) are limited
to Q2 < 3.4GeV? in the neutron case [16].

Finally, in Figure 8 we show contributions to nucleon form factors from u and
d quarks separately. For comparison, these contributions are shown rescaled in the
fashion similar to Ref. [18]. In experiment, this can be studied by combining proton
and neutron data and relying on SU(2); symmetry, which is exact in our lattice QCD
calculations. Since both the neutron and the proton data are required, the fit can
only be relied upon for Q% < 3.4 GeV?2. Similarly to the nucleon form factors, lattice



results for their flavor consituents overshoot experimental fits by a large factor. Still,
it is reassuring that their Q% behavior and the relative u and d quark contributions
are in qualitative agreement.

4 Conclusions

To summarize, results of these initial lattice QCD calculations of nucleon form factors
are overestimating the results of experiment by a large factor. However, the ratios of
these form factors are in much better agreement with experiment and phenomenology.
Calculations with smaller lattice spacings, which are underway, will lead to better
understanding of this disagreement, validate lattice QCD methods for high-momentum
nucleon states on a lattice, and shed light on nucleon structure in the important region
of transition from nonperturbative to perturbative quark-gluon dynamics.
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