001     1017191
005     20240711101505.0
024 7 _ |a 10.1016/j.ecmx.2022.100336
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04004
|2 datacite_doi
024 7 _ |a WOS:000898810900007
|2 WOS
037 _ _ |a FZJ-2023-04004
082 _ _ |a 333.7
100 1 _ |a Zier, Michael
|0 P:(DE-Juel1)180386
|b 0
|e Corresponding author
245 _ _ |a Industrial decarbonization pathways: The example of the German glass industry
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697799938_13299
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals, sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason, a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby, the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately + 200 %. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching, the complete phase-out from natural gas to renewable energy carriers. Furthermore, the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion, the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace, and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target.
536 _ _ |a 1111 - Effective System Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1111
|c POF4-111
|f POF IV
|x 0
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pflugradt, Noah
|0 P:(DE-Juel1)180886
|b 1
|u fzj
700 1 _ |a Stenzel, Peter
|0 P:(DE-Juel1)145405
|b 2
|u fzj
700 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 3
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
|u fzj
773 _ _ |a 10.1016/j.ecmx.2022.100336
|g Vol. 17, p. 100336 -
|0 PERI:(DE-600)3010114-1
|p 100336 -
|t Energy conversion and management: X
|v 17
|y 2023
|x 2590-1745
856 4 _ |u https://juser.fz-juelich.de/record/1017191/files/1-s2.0-S2590174522001593-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1017191
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180386
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)180386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 1
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Mirror Journal
|0 StatID:(DE-HGF)3101
|2 StatID
|d 2023-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:22Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:22Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG CONVERS MAN-X : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG CONVERS MAN-X : 2022
|d 2023-10-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21