001017202 001__ 1017202
001017202 005__ 20240213111727.0
001017202 0247_ $$2doi$$a10.1016/j.nicl.2023.103508
001017202 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04013
001017202 0247_ $$2pmid$$a37717383
001017202 0247_ $$2WOS$$aWOS:001138051600001
001017202 037__ $$aFZJ-2023-04013
001017202 082__ $$a610
001017202 1001_ $$0P:(DE-Juel1)167565$$aRichter, Nils$$b0$$eCorresponding author$$ufzj
001017202 245__ $$aFine-grained age-matching improves atrophy-based detection of mild cognitive impairment more than amyloid-negative reference subjects
001017202 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2023
001017202 3367_ $$2DRIVER$$aarticle
001017202 3367_ $$2DataCite$$aOutput Types/Journal article
001017202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701156752_30734
001017202 3367_ $$2BibTeX$$aARTICLE
001017202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017202 3367_ $$00$$2EndNote$$aJournal Article
001017202 520__ $$aAbstractIntroduction: In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy.Methods: T1-weighted magnetic resonance imaging (MRI) data of 131 cognitively normal (CN) individuals and 91 patients with MCI from the Alzheimer's disease neuroimaging initiative (ADNI) characterized concerning amyloid status, as well as 19 CN individuals and 19 MCI patients from an independent validation sample were segmented, spatially normalized and analyzed in the framework of voxel-based morphometry (VBM). For each participant, statistical maps of GM atrophy were computed as the deviation from the GM of CN reference groups at the voxel level. CN reference groups composed with different degrees of age-matching, and mixed and strictly amyloid-negative CN reference groups were examined regarding their effect on the accuracy in distinguishing between CN and MCI. Furthermore, the effects of spatial smoothing and atrophy threshold were assessed.Results: Approaches with a specific reference group for each age significantly outperformed all other age-adjustment strategies with a maximum area under the curve of 1.0 in the ADNI sample and 0.985 in the validation sample. Accounting for age in a regression-based approach improved classification accuracy over that of a single CN reference group in the age range of the patient sample. Using strictly amyloid-negative reference groups improved classification accuracy only when age was not considered.Conclusion: Our results demonstrate that VBM can differentiate between age-related and MCI-associated atrophy with high accuracy. Crucially, age-specific reference groups significantly increased accuracy, more so than regression-based approaches and using amyloid-negative reference groups.Keywords: ADNI; Alzheimer’s disease; CAT12; DARTEL; Gray matter; MRI; Voxel-based-morphometry; Z-statistics.
001017202 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001017202 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001017202 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017202 7001_ $$0P:(DE-HGF)0$$aBrand, Stefanie$$b1
001017202 7001_ $$aNellessen, Nils$$b2
001017202 7001_ $$0P:(DE-Juel1)162382$$aDronse, Julian$$b3
001017202 7001_ $$0P:(DE-HGF)0$$aGramespacher, Hannes$$b4
001017202 7001_ $$0P:(DE-HGF)0$$aSchmieschek, Maximilian H. T.$$b5
001017202 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6$$ufzj
001017202 7001_ $$0P:(DE-Juel1)131730$$aKukolja, Juraj$$b7
001017202 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b8
001017202 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2023.103508$$gVol. 40, p. 103508 -$$p103508 -$$tNeuroImage: Clinical$$v40$$x2213-1582$$y2023
001017202 8564_ $$uhttps://juser.fz-juelich.de/record/1017202/files/PDF.pdf$$yOpenAccess
001017202 8564_ $$uhttps://juser.fz-juelich.de/record/1017202/files/PDF.gif?subformat=icon$$xicon$$yOpenAccess
001017202 8564_ $$uhttps://juser.fz-juelich.de/record/1017202/files/PDF.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001017202 8564_ $$uhttps://juser.fz-juelich.de/record/1017202/files/PDF.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001017202 8564_ $$uhttps://juser.fz-juelich.de/record/1017202/files/PDF.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001017202 8767_ $$d2023-10-20$$eAPC$$jZahlung erfolgt$$züber 3.000€
001017202 8767_ $$d2023-10-20$$eAPC$$jZahlung angewiesen$$zKostenstelle erfragt
001017202 909CO $$ooai:juser.fz-juelich.de:1017202$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001017202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167565$$aForschungszentrum Jülich$$b0$$kFZJ
001017202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
001017202 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001017202 9141_ $$y2023
001017202 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001017202 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001017202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001017202 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2022$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:23Z
001017202 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:23Z
001017202 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:23Z
001017202 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001017202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001017202 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001017202 980__ $$ajournal
001017202 980__ $$aVDB
001017202 980__ $$aUNRESTRICTED
001017202 980__ $$aI:(DE-Juel1)INM-3-20090406
001017202 980__ $$aAPC
001017202 9801_ $$aAPC
001017202 9801_ $$aFullTexts