001     1017205
005     20240116084321.0
024 7 _ |a 10.1016/j.firesaf.2023.103929
|2 doi
024 7 _ |a 0378-7761
|2 ISSN
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04016
|2 datacite_doi
024 7 _ |a WOS:001072439000001
|2 WOS
037 _ _ |a FZJ-2023-04016
082 _ _ |a 690
100 1 _ |a Börger, Kristian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Assessing performance of LEDSA and Radiance method for measuring extinction coefficients in real-scale fire environments
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701839616_24357
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two photometric measurement methods (Radiance method and LEDSA) were compared against the established MIREX measurement apparatus under controlled laboratory conditions to assess their capability of measuring extinction coefficients in real-scale fires on a temporal and spatial scale. LEDSA is a tomographic technique based on direct measurements of light intensity from individual LEDs using commercially available DSLR cameras. By discretizing the domain into horizontal layers with homogeneous smoke density, values of the extinction coefficient can be computed using an inverse model based on Beer Lambert’s law. The Radiance method involves measuring the contrast of light and dark areas in images and/or video footage. It was originally developed to investigate the descent of the smoke layer in high-temperature fire events. In this work, the extinction coefficient was deduced from measurements on a contrast board by a straightforward analytical approach. Both methods were shown to yield similar extinction coefficient results in line with the MIREX for an EN 54-7 TF5 n-heptane fire. The Radiance method is able to generate accurate patterns but not values for a TF2 wood smouldering fire, while LEDSA is generally able to reflect the MIREX measurement values, yet requires higher computational effort.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ellingham, Jennifer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Belt, Alexander
|0 P:(DE-Juel1)138417
|b 2
700 1 _ |a Schultze, Thorsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bieder, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Weckman, Elizabeth
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.firesaf.2023.103929
|g Vol. 141, p. 103929 -
|0 PERI:(DE-600)1483569-1
|p 103929 -
|t Fire safety journal
|v 141
|y 2023
|x 0378-7761
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017205/files/1-s2.0-S0379711223001972-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1017205/files/1-s2.0-S0379711223001972-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1017205/files/1-s2.0-S0379711223001972-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1017205/files/1-s2.0-S0379711223001972-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1017205/files/1-s2.0-S0379711223001972-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1017205
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Bergische Universität Wuppertal
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-09-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21