001017215 001__ 1017215
001017215 005__ 20240711113611.0
001017215 0247_ $$2doi$$a10.1088/1741-4326/acf0d4
001017215 0247_ $$2ISSN$$a0029-5515
001017215 0247_ $$2ISSN$$a1741-4326
001017215 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04026
001017215 0247_ $$2WOS$$aWOS:001083101200001
001017215 037__ $$aFZJ-2023-04026
001017215 082__ $$a620
001017215 1001_ $$0P:(DE-Juel1)8998$$aMatveev, D.$$b0$$eCorresponding author$$ufzj
001017215 245__ $$aTritium removal from JET-ILW after T and D–T experimental campaigns
001017215 260__ $$aVienna$$bIAEA$$c2023
001017215 3367_ $$2DRIVER$$aarticle
001017215 3367_ $$2DataCite$$aOutput Types/Journal article
001017215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698215029_21059
001017215 3367_ $$2BibTeX$$aARTICLE
001017215 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017215 3367_ $$00$$2EndNote$$aJournal Article
001017215 520__ $$aAfter the second Deuterium–Tritium Campaign (DTE2) in the JET tokamak with the ITER-Like Wall (ILW) and full tritium campaigns that preceded and followed after the DTE2, a sequence of fuel recovery methods was applied to promote tritium removal from wall components. The sequence started with several days of baking of the main chamber walls at 240 °C and at 320 °C. Subsequently, baking was superimposed with Ion-Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) cleaning cycles in deuterium. Diverted plasma operation in deuterium with different strike point configurations, including a Raised Inner Strike Point (RISP) configuration, and with different plasma heating—Ion Cyclotron Resonance Frequency (ICRF) and Neutral Beam Injection (NBI)—concluded the cleaning sequence. Tritium content in plasma and in the pumped gas was monitored throughout the experiment. The applied fuel recovery methods allowed reducing the residual tritium content in deuterium NBI-heated plasmas to about 0.1% as deduced from neutron rate measurements. This value is well below the requirement of 1% set by the maximum 14 MeV fusion neutron budget allocated in the ensuing deuterium plasma campaign. The quantified tritium removal over the course of the experiment was $\left( {13.4 \pm 0.7} \right) \times {10^{22}}$ atoms or $\left( {0.67 \pm 0.03} \right)$ g with ∼58% attributed to baking, ∼12.5% to ICWC, ∼26% to GDC, and ∼3.5% to first low power RISP plasmas. The experimentally estimated amount of removed tritium is in good agreement with long-term tritium accounting by the JET tritium reprocessing plant, in which the unaccounted amount was reduced by $0.71$ g after the cleaning experiment.
001017215 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
001017215 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017215 7001_ $$0P:(DE-HGF)0$$aDouai, D.$$b1
001017215 7001_ $$0P:(DE-Juel1)145890$$aWauters, T.$$b2
001017215 7001_ $$00000-0002-6805-8853$$aWiddowson, A.$$b3
001017215 7001_ $$00000-0001-8567-3228$$aJepu, I.$$b4
001017215 7001_ $$00000-0001-8392-4644$$aMaslov, M.$$b5
001017215 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6
001017215 7001_ $$0P:(DE-Juel1)158050$$aDittmar, T.$$b7
001017215 7001_ $$0P:(DE-Juel1)167441$$aMonakhov, I.$$b8
001017215 7001_ $$0P:(DE-HGF)0$$aJacquet, P.$$b9
001017215 7001_ $$0P:(DE-Juel1)130001$$aDumortier, P.$$b10
001017215 7001_ $$0P:(DE-HGF)0$$aSheikh, H.$$b11
001017215 7001_ $$0P:(DE-HGF)0$$aFelton, R.$$b12
001017215 7001_ $$0P:(DE-HGF)0$$aLowry, C.$$b13
001017215 7001_ $$0P:(DE-HGF)0$$aCiric, D.$$b14
001017215 7001_ $$0P:(DE-HGF)0$$aBanks, J.$$b15
001017215 7001_ $$0P:(DE-HGF)0$$aBuckingham, R.$$b16
001017215 7001_ $$0P:(DE-HGF)0$$aWeisen, H.$$b17
001017215 7001_ $$0P:(DE-HGF)0$$aLaguardia, L.$$b18
001017215 7001_ $$0P:(DE-HGF)0$$aGervasini, G.$$b19
001017215 7001_ $$00000-0001-8020-7682$$ade la Cal, E.$$b20
001017215 7001_ $$0P:(DE-Juel1)129994$$aDelabie, E.$$b21
001017215 7001_ $$0P:(DE-HGF)0$$aGhani, Z.$$b22
001017215 7001_ $$00000-0003-0104-1616$$aGaspar, J.$$b23
001017215 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b24
001017215 7001_ $$0P:(DE-Juel1)171218$$aGroth, M.$$b25$$ufzj
001017215 7001_ $$00000-0003-1301-0497$$aKumpulainen, H.$$b26
001017215 7001_ $$0P:(DE-Juel1)184375$$aKarhunen, J.$$b27
001017215 7001_ $$0P:(DE-HGF)0$$aKnipe, S.$$b28
001017215 7001_ $$0P:(DE-HGF)0$$aAleiferis, S.$$b29
001017215 7001_ $$00000-0002-5688-7988$$aLoarer, T.$$b30
001017215 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b31
001017215 7001_ $$0P:(DE-HGF)0$$aNoble, C.$$b32
001017215 7001_ $$0P:(DE-HGF)0$$aPapadopoulos, G.$$b33
001017215 7001_ $$00000-0003-1333-6331$$aPawelec, E.$$b34
001017215 7001_ $$0P:(DE-HGF)0$$aRomanelli, S.$$b35
001017215 7001_ $$00000-0002-3111-5113$$aSilburn, S.$$b36
001017215 7001_ $$0P:(DE-HGF)0$$aJoffrin, E.$$b37
001017215 7001_ $$0P:(DE-HGF)0$$aTsitrone, E.$$b38
001017215 7001_ $$0P:(DE-HGF)0$$aRimini, F.$$b39
001017215 7001_ $$0P:(DE-Juel1)169313$$aMaggi, C. F.$$b40
001017215 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/acf0d4$$gVol. 63, no. 11, p. 112014 -$$n11$$p112014 -$$tNuclear fusion$$v63$$x0029-5515$$y2023
001017215 8564_ $$uhttps://juser.fz-juelich.de/record/1017215/files/Matveev_2023_Nucl._Fusion_63_112014.pdf$$yOpenAccess
001017215 8564_ $$uhttps://juser.fz-juelich.de/record/1017215/files/pp_Matveev.pdf$$yOpenAccess
001017215 8767_ $$d2023-10-20$$eAPC$$jPublish and Read
001017215 909CO $$ooai:juser.fz-juelich.de:1017215$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8998$$aForschungszentrum Jülich$$b0$$kFZJ
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158050$$aForschungszentrum Jülich$$b7$$kFZJ
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130001$$aForschungszentrum Jülich$$b10$$kFZJ
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b24$$kFZJ
001017215 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171218$$aForschungszentrum Jülich$$b25$$kFZJ
001017215 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
001017215 9141_ $$y2023
001017215 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001017215 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001017215 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001017215 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017215 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017215 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2022$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-24$$wger
001017215 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001017215 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001017215 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
001017215 9801_ $$aAPC
001017215 9801_ $$aFullTexts
001017215 980__ $$ajournal
001017215 980__ $$aVDB
001017215 980__ $$aUNRESTRICTED
001017215 980__ $$aI:(DE-Juel1)IEK-4-20101013
001017215 980__ $$aAPC
001017215 981__ $$aI:(DE-Juel1)IFN-1-20101013