Home > Publications database > Observation of reversible light degradation in organic photovoltaics induced by long-persistent radicals > print |
001 | 1017310 | ||
005 | 20240712113024.0 | ||
024 | 7 | _ | |a 10.1039/D3EE02540C |2 doi |
024 | 7 | _ | |a 1754-5692 |2 ISSN |
024 | 7 | _ | |a 1754-5706 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-04044 |2 datacite_doi |
024 | 7 | _ | |a WOS:001078917900001 |2 WOS |
037 | _ | _ | |a FZJ-2023-04044 |
082 | _ | _ | |a 690 |
100 | 1 | _ | |a Zhang, Difei |b 0 |
245 | _ | _ | |a Observation of reversible light degradation in organic photovoltaics induced by long-persistent radicals |
260 | _ | _ | |a Cambridge |c 2023 |b RSC Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1701182337_23345 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a With the rapid development of organic photovoltaics, device stability has become a crucial obstacle hindering their transition from laboratory-scale to industrial applications. However, it still remains unclear how light differs from heat in driving trap formation and device degradation. On the basis of the PTzBI-dF:Y6-BO system, it is observed that the post-thermal annealing on these high-performance organic solar cells can partially recover the light-induced burn-in losses. The recovery process is found to be correlated with a reversible charge extraction ability, reversible trap density of state, local charge carrier density and charge accumulation. Herein, we propose an innovative mechanism for light degradation in organic photovoltaic devices, which is triggered by the presence of light-induced long-persistent radicals. The findings offer deep insights into light degradation of organic photovoltaics and a new perspective for improving device stability under long-term operation. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Liu, Chao |b 1 |
700 | 1 | _ | |a Zhang, Kaicheng |b 2 |
700 | 1 | _ | |a Jia, Yanhua |b 3 |
700 | 1 | _ | |a Zhong, Wenkai |0 0000-0001-8333-4898 |b 4 |
700 | 1 | _ | |a Qiu, Weidong |b 5 |
700 | 1 | _ | |a Li, Yuanfeng |0 0009-0002-9036-1469 |b 6 |
700 | 1 | _ | |a Heumüller, Thomas |0 P:(DE-Juel1)180635 |b 7 |u fzj |
700 | 1 | _ | |a Forberich, Karen |0 P:(DE-Juel1)178784 |b 8 |u fzj |
700 | 1 | _ | |a Le Corre, Vincent M. |b 9 |
700 | 1 | _ | |a Lüer, Larry |b 10 |
700 | 1 | _ | |a Li, Ning |0 P:(DE-Juel1)180778 |b 11 |e Corresponding author |
700 | 1 | _ | |a Huang, Fei |0 0000-0001-9665-6642 |b 12 |e Corresponding author |
700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 13 |u fzj |
700 | 1 | _ | |a Ying, Lei |0 0000-0003-1137-2355 |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1039/D3EE02540C |g p. 10.1039.D3EE02540C |0 PERI:(DE-600)2439879-2 |n 11 |p 5339-5349 |t Energy & environmental science |v 16 |y 2023 |x 1754-5692 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1017310/files/Manuscript%20-%20without%20mark.docx |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1017310/files/Supporting%20Information%20-%20wo%20mark.docx |
909 | C | O | |o oai:juser.fz-juelich.de:1017310 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)180635 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)178784 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)180778 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)176427 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-32 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-32 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERG ENVIRON SCI : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b ENERG ENVIRON SCI : 2022 |d 2023-10-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|