001     1017338
005     20240712113118.0
024 7 _ |a 10.1002/aenm.202302309
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04050
|2 datacite_doi
024 7 _ |a WOS:001070485800001
|2 WOS
037 _ _ |a FZJ-2023-04050
082 _ _ |a 050
100 1 _ |a Schlautmann, Eva
|b 0
245 _ _ |a Impact of the Solid Electrolyte Particle Size Distribution in Sulfide‐Based Solid‐State Battery Composites
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705060517_32018
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All solid-state batteries are promising, as they are expected to offer increased energy density over conventional lithium-ion batteries. Here, the microstructure of solid composite electrodes plays a crucial role in determining the characteristics of ionic and electronic pathways. Microstructural aspects that impede charge carrier transport can, for instance, be voids resulting from a general mismatch of particle sizes. Solid electrolyte materials with smaller particle size distribution represent a promising approach to limit the formation of voids and to match the smaller active materials. Therefore, a systematic investigation on the influence of the solid electrolyte particle size on the microstructural properties, charge carrier transport, and rate performance is essential. This study provides an understanding of the influence of the particle sizes of Li6PS5Cl on the charge carrier transport properties and their effect on the performance of solid-state batteries. In conclusion, smaller Li6PS5Cl particles optimize the charge transport properties and offer a higher interface area with the active material, resulting in improved solid-state battery performance.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Weiß, Alexander
|b 1
700 1 _ |a Maus, Oliver
|b 2
700 1 _ |a Ketter, Lukas
|b 3
700 1 _ |a Rana, Moumita
|b 4
700 1 _ |a Puls, Sebastian
|0 P:(DE-Juel1)191492
|b 5
700 1 _ |a Nickel, Vera
|b 6
700 1 _ |a Gabbey, Christine
|b 7
700 1 _ |a Hartnig, Christoph
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bielefeld, Anja
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 10
|e Corresponding author
773 _ _ |a 10.1002/aenm.202302309
|g p. 2302309
|0 PERI:(DE-600)2594556-7
|n 41
|p 2302309
|t Advanced energy materials
|v 13
|y 2023
|x 1614-6832
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017338/files/Advanced%20Energy%20Materials%20-%202023%20-%20Schlautmann%20-%20Impact%20of%20the%20Solid%20Electrolyte%20Particle%20Size%20Distribution%20in.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017338/files/revised_manuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1017338/files/Advanced%20Energy%20Materials%20-%202023%20-%20Schlautmann%20-%20Impact%20of%20the%20Solid%20Electrolyte%20Particle%20Size%20Distribution%20in.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1017338/files/Advanced%20Energy%20Materials%20-%202023%20-%20Schlautmann%20-%20Impact%20of%20the%20Solid%20Electrolyte%20Particle%20Size%20Distribution%20in.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1017338/files/Advanced%20Energy%20Materials%20-%202023%20-%20Schlautmann%20-%20Impact%20of%20the%20Solid%20Electrolyte%20Particle%20Size%20Distribution%20in.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1017338/files/Advanced%20Energy%20Materials%20-%202023%20-%20Schlautmann%20-%20Impact%20of%20the%20Solid%20Electrolyte%20Particle%20Size%20Distribution%20in.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1017338
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)191492
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21