001017340 001__ 1017340
001017340 005__ 20240709081928.0
001017340 0247_ $$2doi$$a10.1021/acsaem.3c01977
001017340 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04052
001017340 0247_ $$2WOS$$aWOS:001082562700001
001017340 037__ $$aFZJ-2023-04052
001017340 082__ $$a540
001017340 1001_ $$aBöger, Thorben$$b0
001017340 245__ $$aThermal Conductivities of Lithium-Ion-Conducting Solid Electrolytes
001017340 260__ $$aWashington, DC$$bACS Publications$$c2023
001017340 3367_ $$2DRIVER$$aarticle
001017340 3367_ $$2DataCite$$aOutput Types/Journal article
001017340 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705062721_17557
001017340 3367_ $$2BibTeX$$aARTICLE
001017340 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017340 3367_ $$00$$2EndNote$$aJournal Article
001017340 520__ $$aSolid electrolytes and solid-state batteries have gathered attention in recent years as a potential alternative to state-of-the-art lithium-ion batteries, given the promised increased energy density and safety following the replacement of flammable organic electrolytes with solids. While ongoing research focuses mainly on improving the ionic conductivities of solid electrolytes, little is known about the thermal transport properties of this material class. This includes fundamental studies of heat capacities and thermal conductivities, application-oriented investigations of porosity effects, and the modeling of the temperature distribution in solid-state batteries during operation. To expand the understanding of transport in solid electrolytes, in this work, thermal properties of electrolytes in the argyrodite family (Li6PS5X with X = Cl, Br, I, and Li5.5PS4.5Cl1.5) and Li10GeP2S12 as a function of temperature and porosity are reported. It is shown that the thermal conductivities of solid electrolytes are in the range of liquid electrolytes. Utilizing effective medium theory to describe the porosity-dependent results, an empirical predictive model is obtained, and the intrinsic (bulk) thermal conductivities for all electrolytes are extracted. Moreover, the temperature-independent, glass-like thermal conductivities found in all materials suggest that thermal transport in these ionic conductors occurs in a nontextbook fashion.
001017340 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001017340 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017340 7001_ $$aBernges, Tim$$b1
001017340 7001_ $$00000-0002-1865-1122$$aLi, Yuheng$$b2
001017340 7001_ $$00000-0002-5168-9253$$aCanepa, Pieremanuele$$b3
001017340 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b4$$eCorresponding author
001017340 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.3c01977$$gVol. 6, no. 20, p. 10704 - 10712$$n20$$p10704 - 10712$$tACS applied energy materials$$v6$$x2574-0962$$y2023
001017340 8564_ $$uhttps://juser.fz-juelich.de/record/1017340/files/revised_manuscript.pdf$$yPublished on 2023-10-10. Available in OpenAccess from 2024-10-10.
001017340 909CO $$ooai:juser.fz-juelich.de:1017340$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017340 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b4$$kFZJ
001017340 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001017340 9141_ $$y2023
001017340 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001017340 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001017340 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001017340 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001017340 9801_ $$aFullTexts
001017340 980__ $$ajournal
001017340 980__ $$aVDB
001017340 980__ $$aUNRESTRICTED
001017340 980__ $$aI:(DE-Juel1)IEK-12-20141217
001017340 981__ $$aI:(DE-Juel1)IMD-4-20141217