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Abstract 

Ion transport in nanoconfined electrolytes exhibits nonlinear effects caused by 

large driving forces and pronounced boundary effects. An improved 

understanding of these impacts is urgently needed to guide the design of key 

components of electrochemical energy systems. Herein, we employ a nonlinear 

Poisson-Nernst-Planck theory to describe ion transport in nanoconfined 

electrolytes coupled with two sets of boundary conditions to mimic different cell 

configurations in experiments. A peculiar nonmonotonic charging behavior is 

discovered when the electrolyte is placed between a blocking electrode and an 

electrolyte reservoir, while normal monotonic behaviors are seen when electrolyte 

is placed between two blocking electrodes. We reveal that impedance shapes 

depend on the definition of surface charge and the electrode potential. 

Particularly, an additional arc can emerge in the intermediate-frequency range 

at potentials away from the potential of zero charge. The obtained insights are 

instrumental to experimental characterization of ion transport in nanoconfined 

electrolytes. 

Keywords: Ion transport, nanoconfinement, nonlinear Poisson-Nernst-Planck, 

solid electrolyte, impedance. 

 



 

 

Ion transport is a fundamental process and sometimes the rate-determining step 

in electrochemical energy technologies, such as lithium-ion batteries. In the bulk 

phase, ion transport is often described using Fick’s law with the ion flux being 

proportional to the concentration gradient (1-4). Near a charged interface, ion 

flux driven by the spatially varying electrical field cannot be neglected, and 

Poisson-Nernst-Planck (PNP) theory is often used in this context (5-8). Modified 

PNP theories have been developed for ion transport in concentrated solutions 

where the finite size of ions and short-range correlations between ions are 

important (9-15). In addition, dynamic density functional theory provides a 

unified framework to describe ion transport in complex fluids (16-18). In spite of 

the formal differences, these theories assume that the ion flux is linear with 

respect to the driving force, viz., the gradient of the electrochemical potential; 

different treatments lead to different expressions of the driving force and 

diffusion coefficient. 

In general, the reaction flux is an exponential function of the driving force. One 

example is the Butler-Volmer equation for charge transfer at the interface 

between two phases. Ion transport could be viewed as a chain of ion-vacancy 

coupled charge transfer reactions (19, 20). This view leads to a Butler-Volmer-

type equation for ion transport in which the ion flux is an exponential function 

of the electrochemical potential gradient of the examined ion, which was earlier 

developed by Riess and Maier (21). When the gradient of the electrochemical 

potential is small, the exponential function can be linearized and a PNP-type 

equation is retrieved (22). This linear approximation is valid for ion transport in 

bulk phase, as well as in thick electric double layers (EDL). However, one would 

expect it to become increasingly problematic when the length scale reduces to 

the order of Debye length, namely, when ion transport occurs in the presence of 

large electric fields, above 100 kV/cm (23-27). 

In this paper, we study ion transport in electrolytes, be it solid or liquid, under 

nanoconfinement where the characteristic length is comparable to the Debye 

length. Under these conditions, nonlinear ion transport kinetics has been 



 

 

observed (28-30). A nonlinear PNP theory is employed for this purpose. To treat 

different boundary conditions found in practical systems, two types of cells, 

including single-blocking open cells (SBOC) and double-blocking closed cells 

(DBCC), are analyzed in detail in both time and frequency space. Though the 

models are simple and not new, several unexpected behaviors are observed, 

including nonmonotonic EDL charging behaviors in the time space for the SBOC, 

the dependency of impedance shape on the definition of the EDL charge, and an 

additional impedance arc at potentials deviating from the potential of zero charge 

(PZC) for the SBOC. The model for the DBCC case is further employed to interpret 

experimental impedance data of ion transport in solid electrolytes. We also briefly 

discuss the influence of charge transfer reactions on the results, leaving a 

detailed analysis for a future study. 

We start with a one-dimensional model with an ideally blocking electrode and an 

electrolyte solution consisting of a binary symmetric electrolyte with ions of the 

same size. Within a primitive picture, the solvent is treated as a dielectric 

continuum with a constant permittivity 𝜀S. Considering the finite size of ions, we 

introduce a finite space between the electrode surface and the edge of the 

electrolyte phase, denoted the Helmholtz plane (HP), of which the permittivity 𝜀HP 

is much lower than 𝜀S (31). Nanoconfined electrolytes can have various boundary 

conditions in electrochemical energy devices. In metal-ion batteries, the solid-

electrolyte interphase (SEI) can be mimicked as a nanoconfined electrolyte 

sandwiched between an electrode and a bulk electrolyte solution (32-34). Since 

the EDL can exchange particles with the electrolyte solution, we refer to it as a 

single-blocking open cell (SBOC), as illustrated in FIG 1. In measurements of the 

ion conductivity of solid electrolytes for solid-state batteries (35-37), the solid 

electrolyte is sandwiched between two blocking metals, and this case 

corresponds to a double-blocking closed cell (DBCC). 



 

 

 

FIG 1. Schematic diagram of the two types of models. (a) Single-blocking open cell 

with one side in contact with a blocking electrode, and the other side connected to a 

reservoir of electrolyte solution; (b) Double-blocking closed cell with an electrolyte 

solution confined between two blocking electrodes. The solution consists of a binary 

symmetric electrolyte with ions of the same size. 

Ion transport in nanoconfined electrolytes is described by a modified PNP theory 

(20, 38), which in the dimensionless form is given by, 

𝜕𝐶𝑖

𝜕𝜏
=

𝜕𝐽𝑖

𝜕𝑋
, (1) 

𝜕2𝑈

𝜕𝑋2
+

(𝐶+ − 𝐶−)

2
= 0, (2) 

where 𝐶𝑖 is the ion concentration referenced to the bulk concentration 𝑐0
𝑖 , the 

subscript 𝑖 representing cations (+) or anions (−), 𝑋 is the spatial coordinate 

normalized by the Debye length 𝜆𝐷 = √𝜀S𝑅𝑇/(2𝐹2𝑐0) , 𝜏 = 𝑡𝐷+ 𝜆𝐷
2⁄  is the 

dimensionless time, 𝐷𝑖 is the diffusion coefficient of species 𝑖, 𝑈 = 𝐹𝜙 𝑅𝑇⁄  is the 

dimensionless potential, other symbols have their usual meaning. 

The flux term is given by (19), 



 

 

𝐽± =
𝐷±

𝐷+
∙

2𝜆𝐷

𝑎
(𝐶±(1 − 𝛾𝐶)) sinh [

𝑎

2𝜆𝐷
(

1

𝐶±

𝜕𝐶±

𝜕𝑋
+

𝛾

(1 − 𝛾𝐶)

𝜕𝐶

𝜕𝑋
±

𝜕𝑈

𝜕𝑋
)], (3) 

with 𝛾 = 𝑎3𝑐0𝑁A being the volume fraction of all ion in the bulk and 𝐶 = 𝐶+ + 𝐶− 

the total ion concentration. This nonlinear PNP equation can be reduced back to 

the linear PNP when the system remains in near-equilibrium, because sinh 𝜁 ≈ 𝜁 

for 𝜁 ≪ 1: (19, 20), 

𝐽± =
𝐷±

𝐷+
(𝐶±(1 − 𝛾𝐶)) (

1

𝐶±

𝜕𝐶±

𝜕𝑋
+

𝛾

(1 − 𝛾𝐶)

𝜕𝐶

𝜕𝑋
±

𝜕𝑈

𝜕𝑋
). (4) 

At the left boundary, designated at the HP, 𝑋 = 0, the flux vanishes for both 

SBOC and DBCC cases, 

𝐽±(0, 𝜏) = 0. (5) 

As there is no extra charge in the space between the metal electrode surface and 

the HP, the potential distribution is linear in this region, (39, 40), 

𝑈(0, 𝜏) = 𝑈M +
𝛿HP

𝜆𝐷

𝜀S

𝜀HP

𝜕𝑈

𝜕𝑋
(0, 𝜏), (6) 

where 𝑈M is the surface potential applied on the left metal electrode.  

The right boundary condition is contingent on the type of cell. For the SBOC, the 

nanoconfined electrolyte is connected with a constant-potential reservoir of 

electrolyte at 𝑋 = 𝐿, namely, 

𝐶+(𝐿, 𝜏) = 1, 𝐶−(𝐿, 𝜏) = 1, 𝑈(𝐿, 𝜏) = 0, (7) 

meaning that ion concentrations assume their bulk value and the electric 

potential serves as the reference. 

For the DBCC, the right boundary at 𝑋 = 2𝐿 has a zero ion flux, 

𝐽±(2𝐿, 𝜏) = 0, (8) 

and the electrode potential satisfies, 

𝑈(2𝐿, 𝜏) = −𝑈M −
𝛿HP

𝜆𝐷

𝜀𝑆

𝜀HP

𝜕𝑈

𝜕𝑋
(2𝐿, 𝜏), 

(9) 

with −𝑈M being the applied potential on the right metal. 



 

 

Before applying the potential perturbation, we find the electrolyte solution in 

uniform concentrations and zero electric potential for both SBOC and DBCC, 

namely, 

𝐶+(𝑋, 0) = 1, 𝐶−(𝑋, 0) = 1, 𝑈(𝑋, 0) = 0. (10) 

We employ the present model to explore the charging dynamics of nanoconfined 

electrolytes, described in terms of the EDL charge density as a function of time. 

Two definitions of EDL charge exist in the literature (16, 41, 42), as shown in FIG 

S1, including the total diffuse charge, 

𝑄EDL(𝜏) = ∫ (𝐶+(𝑋, 𝜏) − 𝐶−(𝑋, 𝜏))
𝐿

0
𝑑𝑋, (11) 

and the electrode surface charge, 

𝑄M(𝜏) = −
𝜕𝑈(0,𝜏)

𝜕𝑋
. (12) 

These two charges are equivalent, if the electric field vanishes at 𝑋 = 𝐿. Note that 

𝑄M(𝜏) does not start from zero, because the initial electric field at 𝑋 = 0 has 

nonzero value, as shown in FIG S2. In the following, we use consistently the total 

diffuse charge 𝑄EDL(𝜏) to describe the charging dynamics of the SBOC in FIG 2, 

and provide results in terms of 𝑄M(𝜏) in FIG S3. The charging dynamics of EDL 

has been widely studied (43-45). Conventionally, it can be divided into a fast 

process with a time constant of 𝜏RC = 𝜆𝐷𝐿 𝐷+⁄ , and a slow process with a time 

constant of 𝜏𝐷 = 𝐿2 𝐷+⁄ (6, 40, 46, 47). Such two-stage charging behaviors are 

observed for ‘thick’, namely, 𝐿 ≫ 𝜆𝐷, electrolyte films, which are well described 

by the linear PNP theory. The charging dynamics of the DBCC given in FIG S4 

(a) shows a similar charging behavior. 

The nonlinear PNP theory differs from the linear PNP in two aspects. On the one 

hand, the nanoconfined electrolyte described using the nonlinear PNP theory 

charges faster, as shown in FIG 2(a), because the ion flux is larger under the 

same driving force since sinh 𝜁 > 𝜁. On the other hand, the 𝑄EDL(𝜏) exhibits more 

pronounced nonmonotonic charging behavior, when nonlinear PNP theory is 



 

 

used. In addition, the nonmonotonicity is more pronounced when the EDL is 

driven further away from equilibrium, namely, when 𝑈M is more negative, for the 

SBOC, see FIG 2(a). The same phenomenon exists for 𝑄M(𝜏) in FIG S3. 

Is this nonmonotonic charging dynamics unique for the nonlinear PNP theory? 

No, we observe nonmonotonic charging dynamics when 𝐿  is reduced below 

0.52𝜆𝐷 (5 nm for the present case) even for the linear PNP theory, as shown in FIG 

2(b). This indicates that the nonmonotonic charging dynamics is caused not by 

nonlinearity but by nanoconfinement. To interpret this nonmonotonicity of the 

charging curve, we track the time evolution of the net charge density (𝜌 = 𝐶+ − 𝐶−) 

for the linear PNP theory at 𝐿 = 0.52𝜆𝐷, 𝑈M = −20 in FIG S5. We notice that, when 

𝜏 ≤ 3.8 , the curve of 𝜌~𝑋  is elevated with increasing time, indicating that 

counterions are attracted to the electrode surface to form the diffuse layer (48). 

When 𝜏 > 3.8, the curve of 𝜌~𝑋 gradually decays because the surface charge is 

already overscreened by the counterions, thus the excess amount of counterions 

need to be balanced by coions in the diffuse later. Therefore, the net charge 

density decreases until equilibrium is reached (11). In summary, the proposed 

model reveals overscreening phenomenon in SBOCs induced by 

nanoconfinement. 

The nonlinear and nonmonotonic effects depend on two key parameters, 𝐿 and 

𝑈M. Herein, we introduce two related descriptors, 𝛥nlin and 𝛥nmon, 

𝛥nlin =
𝑄nlin − 𝑄lin

𝑄lin
, (13) 

which is the relative difference of 𝑄EDL between nonlinear PNP and linear PNP, 

and, 

𝛥nmon =
𝑄max − 𝑄eq

𝑄eq
, (14) 

which is the relative difference of 𝑄EDL between maximum and equilibrium values. 

Both ratios are functions of 𝑈M and 𝐿, as shown in FIG 2 (c-d). In FIG 2 (c), we 

calculate 𝛥nlin at a dimensionless time 𝜏 = 2, because the nonlinear effect is most 



 

 

pronounced in this range. 𝛥nlin is larger at small 𝐿 and large |𝑈M|, and 𝛥nlin is 

greater than 1 when 𝐿 < 5.4𝜆𝐷 (52 nm) and |𝑈M| > 6.1 (0.15 V), namely, when the 

electric field 𝐸 > 30 kV/cm. The electric field in the SEI has been estimated to be 

about > 50 kV/cm, using nonlinear conductivity spectroscopy (23, 49). Therefore, 

nonlinear PNP theory is more accurate to describe ion transport in this case. In 

FIG 2 (d), 𝛥nmon is greater than 0.2 when 𝐿 < 1.4𝜆𝐷 (13 nm) and |𝑈M| > 12.5 (0.31 V), 

suggesting that nonmonotonic dynamic charging is more pronounced under 

such conditions. In other words, nonmonotonic charging behavior is enhanced 

in nanoconfinement with a higher electric field. 

 
FIG 2. The charging dynamics of nanoconfined electrolytes in terms of the total diffuse 

charge 𝑄EDL(𝜏) for the nonlinear (line) and linear PNP theory (dash line) at (a) different 

applied voltages and (b) electrolyte thicknesses for the single-blocking open cells. (c) 

Regime of nonlinearity of the PNP theory. (d) Regime of nonmonotonic EDL charging 



 

 

dynamics. Model parameters are 𝑐0 = 1 × 10−3 mol L−1, 𝐷± = 1 × 10−11 m2 s−1, 𝛿HP =

0.3 nm , and the corresponding references values are 𝜆𝐷 ≈ 9.63 nm, 𝑡𝑟𝑒𝑓 = 𝜆𝐷
2 𝐷+⁄ =

9.27 × 10−7 s, 𝑈𝑟𝑒𝑓 = 𝑅𝑇 𝐹⁄ = 25 mV. 

Electrochemical impedance spectroscopy (EIS) allows analyzing ion transport in 

a wide frequency range. The EIS response for SBOC and DBCC are solved 

analytically at PZC (50, 51), see technical details in supplementary note 5, and 

numerically at other potentials following the method of Refs.(52, 53). There is no 

difference between the linear PNP theory and nonlinear PNP theory in the EIS 

response because the sinusoidal potential is a small perturbation signal, see FIG 

S7. Contrary to the time-domain results, EIS calculated from two definitions of 

EDL charge are nontrivially different. In this section, we describe the EIS 

response of the SBOC, and provide the results of the DBCC in FIG S8.  

At the PZC, namely, 𝑈M
dc = 0 , the impedance based on 𝑄EDL  is analytically 

expressed as, 

𝑍EDL =
1

𝑗𝜔𝐶H

𝜆1

1 − sech(√𝜆1𝐿 𝜆𝐷⁄ )
+

1

𝑗𝜔𝐶GC
0

tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1

+
𝐿

𝜆𝐷
(𝜆1 − 1)

1 − sech(√𝜆1𝐿 𝜆𝐷⁄ )
, 

(15) 

where 𝐶H  is the Helmholtz capacitance, 𝐶H =
𝜖HP

𝛿HP
, 𝐶GC

0  the Gouy-Chapman 

capacitance at PZC, 𝐶GC
0 =

𝜖s

𝜆𝐷
, and 𝜆1 = 1 + 𝑗𝜔

𝜆𝐷
2

𝐷+
. With asymptotical analysis 

provided in supplementary note 5, in the low frequency range, Eq. ((15) is 

asymptotic to  

𝑍EDL =
1

𝑗𝜔
(

1

𝐶H
+

1

𝐶GC
0 ), (16) 

a capacitive behavior corresponding to the equilibrium EDL capacitance. In the 

high frequency range, Eq. ((15) is asymptotic to,  

𝑍EDL =
𝜆𝐷

2

𝐶H𝐷+

+
𝜆𝐷𝐿

𝐶GC
0 𝐷+

≈
𝐿

2𝐹2𝑐0𝐷+

𝑅𝑇

=
𝐿

𝜎𝑠
, (17) 

a pure resistance behavior, where 𝜎s =
2𝐹2𝑐0𝐷+

𝑅𝑇
 is the electrical conductivity of the 



 

 

bulk electrolyte. 

The impedance response from 𝑄M at the PZC is analytically obtained as, 

 

FIG 3. EIS of ion transport in the single-blocking open cells. (a) Comparison between 

the EIS calculated from the total diffuse charge, denoted as 𝑍EDL, and that from the 



 

 

electrode surface charge, 𝑍M , at the potential of zero charge, 𝑈M
dc = 0 , 𝛿HP = 0 nm . 

Analytical and numerical results are displayed as solid and dashed lines, respectively. 

(b) Influence of the Helmholtz plane (HP) on analytical (solid lines) and numerical 

(dashed lines) solutions of 𝑍M. 𝑍M at different electrode potentials 𝑈M
dc for the (c) SBOC 

and (d) the DBCC at 𝐿 = 100 nm, 𝛿HP = 0 nm. (e-f) Distribution of the net charge density 

at different 𝑈M
dc’s for the SBOC and the DBCC, respectively. Model parameters are 𝑐0 =

1 × 10−3 mol L−1, 𝐷± = 1 × 10−11 m2 s−1 , 𝐸M = 2.5 × 10−3 sin 𝜔𝑡  V , 𝐸eq = 𝐸pzc = 0 . 

Frequency range is 1 × 106~1 × 10−1 Hz. 

 

𝑍M =
1

𝑗𝜔𝐶H
+

1

𝑗𝜔𝐶GC
0

tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1

+
𝐿

𝜆𝐷
(𝜆1 − 1)

𝜆1
, 

(18) 

In the low frequency range, Eq. ((18) asymptotically approaches,  

𝑍M =
1

𝑗𝜔
(

1

𝐶H
+

1

𝐶GC
0 ), (19) 

which is the same as 𝑍EDL in the low frequency range. In the high frequency range, 

Eq. ((18) approaches,  

𝑍M =
1

𝐶GC
0 𝐷+

𝜆𝐷𝐿
+ 𝑗𝜔

𝜖s

𝐿

=
1

1

𝑅ele
pzc + 𝑗𝜔𝐶geo

, 
(20) 

where 𝑅ele
pzc

=
𝜆𝐷𝐿

𝐶GC
0 𝐷+

=
𝐿

𝜎s
 is the electrolyte resistance at the PZC and 𝐶geo =

𝜖s

𝐿
 the 

geometric capacitance of the electrolyte.  

In contrast to a pure resistor given by 𝑍EDL, a semicircle is expected in the high 

frequency range for 𝑍M . Consistent with above theoretical analysis, the EIS 

calculated based on 𝑄EDL shows a nearly vertical line, the EIS calculated based 

on 𝑄M shows a semicircle in high frequency range followed by a vertical line in 

low frequency range, see FIG 3 (a). The agreement between analytical and 

numerical results at 𝛿HP = 0  confirms the accuracy of the numerical method 

when the HP is not considered. In FIG 3 (b), the influence of the HP on analytical 

and numerical solutions at the PZC is examined. The existence of the HP brings 



 

 

about an anomalous semicircle in the second quadrant for the numerical results 

in the dashed line. This anomalous feature is a numerical artifact because it 

disappears in the analytical results in the solid line. Neglecting the HP, we find 

the numerical results are converged to the analytical results, and the mere 

difference is in the length of the low-frequency vertical line, which is readily 

understood as the change of the EDL capacitance, c.f., Eq.(19). Hence, we neglect 

the HP effects in subsequent effects since our focus is put on the high-frequency 

semicircle. 

When the potential deviates from the PZC, namely, 𝑈M
dc ≠ 0, a newly tilted line 

can be observed in the intermediate frequency of 𝑍M in FIG 3 (c). This can be 

attributed to the finite-rate ion transport in the inhomogeneous electrolyte 

featuring a time scale of 𝜏𝐷 = (𝜔𝐷)−1 = 𝐿2 𝐷+⁄ , leading to the frequency dispersion 

of the double-layer capacitance. This frequency-dispersion phenomenon is only 

observed in the SBOC, not in the DBCC of which the EIS is given in FIG 3 (d). 

The reason is that the diffuse layer is more pronounced in the SBOC than in the 

DBCC when 𝑈M
dc ≠ 0, as shown in FIG 3 (e-f). Ion transport in the whole of the 

electrolyte features a time constant of 𝜏𝑅𝐶 = (𝜔𝑅𝐶)−1 = 𝜆𝐷𝐿 𝐷+⁄ . 

Katayama et al. measured the EIS of Ni/LiPON/Li at several electrode potentials 

(54). The Nyquist plots show a semicircle in the high-frequency range, followed 

by a nearly vertical line; they found that the diameter of the semi-circle derived 

from the LiPON thin film increases with increasing electrode potential, consistent 

with the trend of 𝑍M of DBCC in FIG 3 (d). The potential dependence of the 

impedance of Ni/LiPON/Li is reproduced in FIG 4 (a). FIG 4 (b) shows the 

dependence of the electrolyte resistance, 𝑅ele, defined as 𝑅ele = 𝑍M
′ (𝜔 → 0), of the 

DBCC on electric potential 𝑈M
dc. The model-based result in FIG 4 (b) is calculated 

using the parameters from ref.(37, 54, 55), where 𝑐0 = 0.25 M , 𝐷+ = 2 ×

10−12 m2 s−1 , 𝜖s = 𝜖LiPON = 16.6𝜀0 , 2𝐿 = 760 nm. Increasing the applied potential, 

the electrolyte resistance 𝑅LiPON increases gradually due to the decreasing ion 

concentration at the middle plane, 𝐶+,mid
eq

, as shown in FIG 4 (c-d). To save the 



 

 

calculation time, we calculate 𝐶+,mid
eq

 using 2𝐿 = 200 nm. Since 𝐶+,mid
eq

 is uniformly 

distributed, increasing the electrolyte thickness to 760 nm will not affect the 

results. The steady-state cation concentration 𝐶+,mid
eq

 is decreased at more 

negative 𝑈M
dc . The relationship between 𝐶mid

eq
 and 𝑈M

dc  can be described by an 

approximate analytical expression originally given in ref.(56), 

𝐶mid
eq

= A − √A2 − 1, (21) 

where, 

A = 1 + 8 (
𝜆𝐷

𝐿
)

2

[sinh (
𝑈M

dc

4
)]

4

. (22) 

FIG 4 (d) indicates that the analytical solution captures numerical results. 

Experimental values are overall larger than model-based values, which could be 

attributed to the surface roughness of the metal electrode (32, 33, 57). 



 

 

 

FIG 4. EIS of ion transport in the double-blocking closed cells. (a-b) Comparison 

between model and experimental results of the EIS response at different potentials. 

Experimental data were reported by Katayama et al. in Ni/LiPON/Li(54). The model-

based result is calculated using 𝑐0 = 0.25 M, 𝐷+ = 2 × 10−12 m2 s−1 , 𝜖s = 16.6𝜀0 , 2𝐿 =

760 nm. (c) shows the steady-state distribution of cation concentration at different 

applied voltages, and (d) the steady-state cation concentration at the middle plane as 

a function of applied voltage. Analytical and numerical results are displayed as solid 

and dashed lines, respectively. Model parameters are 𝑐0 = 1 × 10−3 mol L−1, 𝐷± =

1 × 10−11 m2 s−1, 2𝐿 = 200 nm, 𝛿HP = 0 nm. 

So far our analysis has been focused on blocking electrodes. As practical 

situations usually involve reactive, non-blocking electrodes, one may wonder if 

the insights collected on the blocking electrodes also apply for non-blocking 



 

 

electrodes. This question is briefly touched upon below. 

Specifically, two more cases involving non-blocking electrodes are considered, 

including a single reactive open cell with the left side in contact with a non-

blocking electrode and the right side connected to a reservoir of electrolyte 

solution, and a single blocking closed cell with the left side in contact with a 

blocking electrode, and the right side connected to a non-blocking electrode (see 

supplementary notes 5 and 9). 

For the case of single reactive open cell, the nonlinear and nonmonotonic effects 

are also observed, and the quantitative difference is that 𝑄EDL(𝜏) decreases at 

larger rate constant 𝑘0,𝑐𝑡. This is because the metal deposition reaction consumes 

cations, thus lowering 𝑄EDL. The regimes of nonlinearity of the PNP theory and 

nonmonotonic EDL charging dynamics are basically the same as for the case of 

SBOC. Therefore, we conclude that the main conclusions previously drawn for 

the single blocking open cell also applicable to a reactive electrode. For the case 

of single blocking closed cell, we notice that the EIS consists of two semicircles 

in high- and intermediate-frequency range and a vertical line in low-frequency 

range. With increasing rate constant 𝑘0,𝑐𝑡, the intermediate-frequency semicircle 

associated with the charging transfer decreases. The high-frequency semicircle 

corresponds to the electrolyte resistance in parallel with the geometric 

capacitance, and a vertical line in low frequency range corresponds to the 

equilibrium EDL capacitance. Therefore, a nonblocking metal on the right side 

will bring forth a new semicircle attributed to the charging transfer reaction in 

the intermediate-frequency range. 

In summary, nonlinear-PNP theory has been employed to describe ion transport 

in nanoconfined electrolytes in single-blocking open cell (SBOC) and double-

blocking closed cell (DBCC) configurations. The SBOC shows a surprising 

nonmonotonic double-layer charging behavior. When the EDL charge refers to 

the total ionic charge in the diffuse layer, the EIS shows a nearly vertical line. 

When the EDL charge refers to the electrode surface charge, the EIS shows a 



 

 

semicircle in the high-frequency range and a vertical line in the low-frequency 

range. An additional impedance arc in the moderate to low frequency range is 

observed only for the SBOC at potentials deviating from the potential of zero 

charge. The high-frequency semicircle represents the electrolyte resistance in 

parallel with the geometric capacitance of the electrolyte. The tilted line at 

intermediate-frequency represents the ion transport in the inhomogeneous 

electrolyte, leading to the frequency dispersion of the double-layer capacitance. 

The low-frequency vertical line is associated with the equilibrium double-layer 

capacitance. Experimental data of ion transport in solid electrolyte are 

interpreted using the DBCC model. We also briefly discussed the influence of 

charge transfer reactions on the results. For the case of single reactive open cell, 

the time-domain charging dynamic behaviors are qualitatively the same as in the 

SBOC case. In frequency space, a non-blocking metal on the right side will bring 

forth a new semicircle attributed to the charging transfer reaction in the 

intermediate frequency range. A more detailed analysis of reactive, non-blocking 

electrodes will be reported in future. 
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