Structural brain health relates to both biomedical and
psycho-social factors in the UK Biobank
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Introduction

The Brain Age Gap, also known as the BAG, 1s the difference between an individual's estimated brain age based on a Machine Learning (ML) model and
their chronological age. This difference can be used as a general measure of the individual's brain health. In turn, it can be applied to research on the
relationship between the health of older people's brains and the external and internal factors that affect them. Thus far, a number of different
investigations have demonstrated that BAG can be associated with particular non-neuroimaging variables; nevertheless, a wide variety of biological and
life factors have only rarely been taken into consideration within the context of a single research endeavour. In this study, we made use of the many
different metrics that are contained within the UK Biobank 1n order to investigate the structural BAG's relationship to biological, lifestyle, and
satisfaction characteristics.
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Results

Figurel A) Predicted Brain Age Vs Chronological Age (or True Age) in the population set,
B) BAG Vs Chronological Age (or True Age) in the population set

1 Healthy Set Performance:
1 Correlation between Predicted and
Chronological Age: r=0.75

Jd Mean Absolute Error (MAE): 3.75 years

J Age Bias (Correlation between BAG and
Chronological Age): r=-0.65

] Population Set Performance (Figure 1):
 Correlation between Predicted and
Chronological Age: r=0.76

1 Mean Absolute Error (MAE): 3.93 years

J Age Bias (Correlation between BAG and
Chronological Age): r=-0.66

1 Significant Univariate Associations with

BAG
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Discussion

By using regression-based ML approaches applied to atlas-based GVM 1n a cohort of strictly healthy people, we could here develop a sensitive BAG-based
structural brain health estimator. Using this estimator in a broader population revealed associations with both biomedical and life factors in line with
previous studies. Nevertheless, our exploratory study further reveals association with psycho-social factors, namely satisfaction with family relationship,
work/life and financial situation. Future work should further characterize these associations by using multivariate, including non-linear, models accounting
for possible interactions between multiple factors from different domains
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