001017440 001__ 1017440
001017440 005__ 20240712112834.0
001017440 0247_ $$2doi$$a10.1039/D3GC02140H
001017440 0247_ $$2ISSN$$a1463-9262
001017440 0247_ $$2ISSN$$a1463-9270
001017440 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04136
001017440 0247_ $$2WOS$$aWOS:001061644400001
001017440 037__ $$aFZJ-2023-04136
001017440 041__ $$aEnglish
001017440 082__ $$a540
001017440 1001_ $$0P:(DE-Juel1)165579$$aMartens, Christina$$b0$$eCorresponding author$$ufzj
001017440 245__ $$aCO$_{2}$  flow electrolysis – limiting impact of heat and gas evolution in the electrolyte gap on current density
001017440 260__ $$aCambridge$$bRSC$$c2023
001017440 3367_ $$2DRIVER$$aarticle
001017440 3367_ $$2DataCite$$aOutput Types/Journal article
001017440 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698382443_20388
001017440 3367_ $$2BibTeX$$aARTICLE
001017440 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017440 3367_ $$00$$2EndNote$$aJournal Article
001017440 520__ $$aResearch in CO$_{2}$ electro-reduction with the aim of providing green chemical feedstock (e.g., CO) has been driven towards optimization of individual components such as CO$_{2}$-reducing gas diffusion electrodes (GDEs) to achieve stable electrolysis processes. Moving forward, investigation into the performance of electrodes at a cell- and system-level is needed to identify key operational parameters that enhance electrode efficiency. In this study, we characterize self-regulated steady-states within an electrolytic cell. Additionally, we explore the circumstances under which the current density passing through the cell becomes self-limiting. GDE-relevant system parameters and their impact on the overall electrode durability during electrolysis at high current densities up to −1.2 A cm$^{-2}$ were analyzed on an intermediate time scale. Integration of inline sensors to the electrolysis test setup enabled close monitoring of changes in the electrolyte temperature and electrolyte pH, as well as the detection of pressure changes around the cathode. In the presented study, the GDE did not appear to be the bottleneck to achieving high current density CO$_{2}$-electrolysis. Instead, electrolyte heating and gas evolution within the electrolyte gap limited the maximum current densities that could be applied to a GDE flow cell. Our results suggest that electrode performance (selectivity, durability) can sometimes be underestimated when electrolysis cells and their periphery are not optimally suited for operation with GDEs yet, thus preventing performance windows from being reached.
001017440 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001017440 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001017440 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x2
001017440 536__ $$0G:(BMBF)03SF0589A$$aVerbundvorhaben iNEW: Inkubator Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW) im Rahmen des Gesamtvorhabens Accelerator Nachhaltige Bereitstellung Elektrochemisch Erzeugter Kraft- und Wertstoffe mittels Power-to-X (ANABEL) (03SF0589A)$$c03SF0589A$$x3
001017440 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x4
001017440 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x5
001017440 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017440 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b1$$eCorresponding author
001017440 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001017440 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001017440 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D3GC02140H$$gVol. 25, no. 19, p. 7794 - 7806$$n19$$p7794 - 7806$$tGreen chemistry$$v25$$x1463-9262$$y2023
001017440 8564_ $$uhttps://juser.fz-juelich.de/record/1017440/files/d3gc02140h.pdf$$yOpenAccess
001017440 8767_ $$d2023-11-03$$eHybrid-OA$$jPublish and Read
001017440 909CO $$ooai:juser.fz-juelich.de:1017440$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001017440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165579$$aForschungszentrum Jülich$$b0$$kFZJ
001017440 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165579$$aRWTH Aachen$$b0$$kRWTH
001017440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b1$$kFZJ
001017440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001017440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001017440 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001017440 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001017440 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001017440 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
001017440 9141_ $$y2023
001017440 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001017440 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017440 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-22$$wger
001017440 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2022$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
001017440 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2022$$d2023-10-22
001017440 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001017440 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001017440 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001017440 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001017440 920__ $$lyes
001017440 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001017440 9801_ $$aFullTexts
001017440 980__ $$ajournal
001017440 980__ $$aVDB
001017440 980__ $$aUNRESTRICTED
001017440 980__ $$aI:(DE-Juel1)IEK-9-20110218
001017440 980__ $$aAPC
001017440 981__ $$aI:(DE-Juel1)IET-1-20110218