001017446 001__ 1017446
001017446 005__ 20240502210453.0
001017446 0247_ $$2doi$$a10.1088/2634-4386/acf1c4
001017446 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04142
001017446 037__ $$aFZJ-2023-04142
001017446 041__ $$aEnglish
001017446 082__ $$a621.3
001017446 1001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b0$$eCorresponding author
001017446 245__ $$aSequence learning in a spiking neuronal network with memristive synapses
001017446 260__ $$bIOP Publishing Ltd.$$c2023
001017446 3367_ $$2DRIVER$$aarticle
001017446 3367_ $$2DataCite$$aOutput Types/Journal article
001017446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714645330_20631
001017446 3367_ $$2BibTeX$$aARTICLE
001017446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017446 3367_ $$00$$2EndNote$$aJournal Article
001017446 520__ $$aBrain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience, but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that may efficiently run this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural network simulator NEST. We investigate two types of ReRAM memristive devices: (i) a gradual, analog switching device, and (ii) an abrupt, binary switching device. We study the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate that, in contrast to many other artificial neural networks, this architecture is resilient with respect to changes in the on-off ratio and the conductance resolution, device variability, and device failure.
001017446 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
001017446 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001017446 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
001017446 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
001017446 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001017446 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x5
001017446 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x6
001017446 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x7
001017446 588__ $$aDataset connected to DataCite
001017446 7001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b1
001017446 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b2
001017446 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
001017446 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4
001017446 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b5
001017446 773__ $$0PERI:(DE-600)3099608-9$$a10.1088/2634-4386/acf1c4$$p034014$$tNeuromorphic computing and engineering$$v3$$x2634-4386$$y2023
001017446 8564_ $$uhttps://juser.fz-juelich.de/record/1017446/files/Bouhadjar_2023_Neuromorph._Comput._Eng._3_034014.pdf$$yOpenAccess
001017446 909CO $$ooai:juser.fz-juelich.de:1017446$$popen_access$$pec_fundedresources$$pVDB$$pdriver$$pdnbdelivery$$popenaire
001017446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b0$$kFZJ
001017446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b1$$kFZJ
001017446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b2$$kFZJ
001017446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
001017446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
001017446 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
001017446 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001017446 9132_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001017446 9141_ $$y2023
001017446 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017446 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:40Z
001017446 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:40Z
001017446 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017446 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review, Double anonymous peer review$$d2023-04-12T14:53:40Z
001017446 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-02
001017446 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-02
001017446 920__ $$lyes
001017446 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001017446 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001017446 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001017446 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
001017446 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
001017446 9201_ $$0I:(DE-Juel1)PGI-15-20210701$$kPGI-15$$lNeuromorphic Software Eco System$$x5
001017446 980__ $$ajournal
001017446 980__ $$aVDB
001017446 980__ $$aI:(DE-Juel1)INM-6-20090406
001017446 980__ $$aI:(DE-Juel1)IAS-6-20130828
001017446 980__ $$aI:(DE-Juel1)INM-10-20170113
001017446 980__ $$aI:(DE-Juel1)PGI-7-20110106
001017446 980__ $$aI:(DE-Juel1)PGI-10-20170113
001017446 980__ $$aI:(DE-Juel1)PGI-15-20210701
001017446 980__ $$aUNRESTRICTED
001017446 9801_ $$aFullTexts
001017446 981__ $$aI:(DE-Juel1)IAS-6-20130828