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Abstract 

Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the 
operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating pho-
tosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize 
growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based 
on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, 
we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean 
(Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period 
using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR 
(ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 
to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic pre-
dictions for new environments in four trials under different growing conditions. Investigating genetic control over 
photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly 
associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In con-
clusion, photosynthetic screening facilitates and accelerates selection for high yield potential.

Keywords:   Breeding, bean, light use efficiency, photosynthesis, phenotyping, selection.
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Introduction

Photosynthesis is highly responsive to fluctuating environ-
mental conditions, constantly adjusting solar energy uptake 
to optimize growth (Demmig-Adams et al., 2012). Therefore, 
photosynthetic performance reflects growth conditions and 
the plant’s ability to cope with these conditions (Murchie 
et al., 2018). The highly dynamic response of photosynthesis 
to changing environmental conditions challenges the true es-
timation of photosynthetic performance in temporal and spa-
tial dimensions (i.e. diurnally up to the growth period and 
within the individual plant canopy up to heterogeneities in 
the field, respectively) (Kaiser et al., 2018). Nevertheless, pho-
tosynthetic parameters have successfully predicted biomass and 
yield in crops and breeding lines (Fischer et al., 1998; Lopez 
et al., 2019; Keller et al., 2022b). Unfortunately, these parame-
ters have rarely been exploited. Is photosynthetic performance 
a limiting factor for yield? Can photosynthetic traits be used 
as a breeding target to increase yield (Gifford and Evans, 1981; 
Sinclair et al., 2019)?

Photosynthesis for yield improvement

Photosynthetic efficiency continues to be a focus for crop yield 
improvement research because conventional traits, such as har-
vest index, are already highly exploited (Reynolds et al., 2012; 
Long et al., 2015). Although photosynthetic performance has 
often improved in high-yielding lines, remaining genetic vari-
ation suggests further potential for improvement (Driever et al., 
2014; Theeuwen et al., 2022). When targeting photosynthetic 
traits for crop improvement, there are two main strategies: (i) 
optimizing the photosynthetic pathway through genetic en-
gineering, or (ii) selecting breeding lines with higher photo-
synthetic efficiency under apparent growing conditions (Parry 
et al., 2011). The former strategy, aimed at improving the photo-
synthetic processes, has been successful in field trials in tobacco, 
rice, and soybean (Kromdijk et al., 2016; South et al., 2019; 
López-Calcagno et al., 2020; De Souza et al., 2022). The latter 
strategy, which aims to increase photosynthetic efficiency by 
selecting adapted lines to growing conditions, produced some 
striking results. For example, Fischer et al. (1998) reported a 
linear yield increase comparing eight wheat (Triticum aestivum 
L.) varieties released between 1962 and 1988. The yield in-
crease (+27%) was associated with 23% and 63% increases in 
the maximum photosynthetic rate (Amax) and stomatal con-
ductance (gs), respectively. Another study reported a correlation 
of r=0.57 between steady-state spikelet photosynthesis and bi-
omass using 12 contrasting wheat breeding lines (Molero and 
Reynolds, 2020). In soybean, photosynthesis and grain yield 
were strongly correlated (r=0.8) in 383 lines (Lopez et al., 
2019). Strong correlations between biomass and photosyn-
thesis measured by gas exchange have also been shown in ear-
lier studies in wheat and soybean (Ashley and Boerma, 1989; 
Gutiérrez-Rodríguez et al., 2000; Carmo-Silva et al., 2017). In 

many other studies reviewed by Zelitch (1982), a relationship 
between photosynthesis and yield was not observed because 
the photosynthetic performance was quantified over a short 
period that was not representative of the entire fluctuating 
growing season.

Photosynthesis under fluctuating conditions

The energy transduction from incident solar radiation to bi-
omass involves the interception of photosynthetically active 
radiation by the leaf canopy, conversion of radiant energy to 
photochemical energy, and transduction into biomass (Zhu 
et al., 2010). The light energy intercepted by plant leaves is 
transmitted, reflected, and absorbed depending on the pig-
ment composition (Porcar-Castell et al., 2014). The absorbed 
solar energy is then dynamically partitioned between three 
different pathways (Butler, 1978). Photosynthesis and dissi-
pation of excess energy as heat through non-photochemical 
quenching (NPQ) are two pathways that are physiologi-
cally regulated to optimize plant growth and development 
(Butler, 1978; Bilger and Bjorkman, 1990). Approximately 
2–4% of the absorbed energy is re-emitted as chlorophyll 
fluorescence (ChlF) via the third pathway (Porcar-Castell 
et al., 2014). Significant losses occur through NPQ (up to 
50% over the growing season), preventing damage and de-
termining whole-canopy photosynthesis (Ishida et al., 2014; 
Murchie and Ruban, 2020). The changing light intensity 
during the day together with the NPQ response causes the 
typical diurnal pattern of photosynthesis (Pieruschka et al., 
2010; Ishida et al., 2014; Keller et al., 2019a). This highly dy-
namic response of photosynthesis requires long-term moni-
toring to determine photosynthetic efficiency throughout 
the season. Photosynthesis measurements via CO2 assimi-
lation over longer growing periods are time consuming—
even when the photochemical uptake is approximated by 
variables such as Amax, which are usually derived under high 
light intensities around midday. In addition, the photosyn-
thetic capacity may vary in different leave types, as shown 
for wheat (Salter et al., 2020). This may explain why such 
screenings have not been further implemented in breeding 
programs when phenotypic information from thousands of 
lines is required. In contrast to gas exchange measurements, 
the operating efficiency of PSII (Fq'/Fm') can be obtained 
in seconds and is widely used in plant physiology as a proxy 
for growth performance (Kalaji et al., 2016; Murchie et al., 
2018). It is determined by the modulated ChlF signal, which 
describes the proportion of energy quantum used for elec-
tron transport (ET) from the absorbed photosynthetic 
photon fluence rate (PPFR) (Schreiber et al., 1986; Baker, 
2008). The ET at PSII is linearly related to CO2 assimila-
tion in the absence of photorespiration or cyclic ET (Genty 
et al., 1989; Yamori et al., 2012). Photorespiration and cyclic 
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ET are increased, for example, under heat and drought stress 
conditions (Golding et al., 2004; Zhang and Sharkey, 2009; 
Hermida-Carrera et al., 2016; Yamori and Shikanai, 2016). 
This method is suitable for rapid, non-invasive, long-term 
observation of linear ET, approximating the energy conver-
sion efficiency of intercepted PPFR to photochemical en-
ergy (ϵe), as well as the competing NPQ (Demmig-Adams 
et al., 2012; Keller et al., 2022b).

Early genomic and phenomic selection

Genetic gain depends on high selection intensity on a herit-
able trait in short breeding cycles. The selection of a trait can 
be aided by genomic or phenomic estimates. Genomic predic-
tions allow calculation of a genomic estimated breeding value 
(GEBV) from seed DNA samples, enabling selection before 
planting (Meuwissen et al., 2001). However, many breeding 
programs require cheap and rapid selection methods at early 
stages of a selection process because genotyping of thousands 
of breeding lines is expensive (Furbank et al., 2019). Phenomic 
selection uses high-throughput measurements, such as the 
spectral or ChlF signal, to predict a target trait. This also favors 
adaptation to new and future environments, accounting for 
genotype by environment interaction (G×E). The G×E can 
then be described by the interaction between genotype and 
the covariate (G×Ec), which is measured for each line in each 
environment (Eeuwijk et al., 2016). Therefore, if measurements 
between lines are sufficiently correlated with the target trait, 
and are cheap and precise, phenomic selection is an efficient 
alternative to genomic selection.

Recently, ChlF measurements were shown to estimate bio-
mass in 12 maize (Zea mays L.) and nine soybean [Glycine max 
(L.) Merr.] lines under field and naturally fluctuating condi-
tions using automated high-throughput phenotyping (Keller 
et al., 2022b). This approach could be modified to screen large 
numbers of early breeding lines for genetic variability in pho-
tosynthetic performance. This is especially useful in crops with 
longer growth cycles, such as the climber types of common 
bean (Phaseolus vulgaris L.). Photosynthetic performance is 
especially interesting in legumes, because they counteract 
protein dilution when assimilating more CO2 by increasing 
biological nitrogen fixation for protein synthesis (Evans and 
Clarke, 2019).

To study the relationship between photosynthetic traits and 
biomass production in climbing bean breeding lines, we inves-
tigated four hypotheses: (i) photosynthetic performance over 
the growing season is correlated with biomass production; (ii) 
selection based on the ϵe can increase the selection effective-
ness of higher grain yield lines; (iii) photosynthesis-related traits 
(determined under the specific growing conditions) are more 
accurate than genomic prediction to predict yield of new lines 
in new environments; and (iv) genes contributing in the con-
trol of photosynthesis can be identified using genome-wide 
association study (GWAS).

Materials and methods

Plant material
This study used 178 breeding lines out of the complete climbing bean 
panel (VEC, total 290 lines) genotyped by Keller et al. (2022a). The panel 
represents the genetic variation of the climbing bean breeding program 
at the International Center for Tropical Agriculture (CIAT). Most of the 
lines belong to the Andean gene pool. A few lines are admixtures be-
tween the Andean and Mesoamerican gene pools.

Growth conditions

Glasshouse
Plants were grown in 2 liter black pots (square opening 12 × 2 cm) in an 
unheated glasshouse located at the agricultural research station Campus 
Klein-Altendorf of the University of Bonn, Germany (50°36'50.7''N, 
6°59'38.9''E, altitude of 185 m a.s.l.). The trials, CKA20D and CKA20E, 
were sown on the first of September and October in 2020, respec-
tively. The pots were filled with ~2 liters of turf–clay substrate (ED73, 
Einheitserdewerke, Sinntal-Altengronau, Germany). The plants were 
grown in six rows with 1.5 m row spacing and 22 pots per row with 14 
cm spacing (Supplementary Fig. S1). The first and last pot in a row were 
excluded as a border. No fertilizers or plant protection agents were used. 
Four seeds per pot were seeded and thinned after ~2 weeks in order to 
grow two plants per pot. Bamboo stakes (~1 m) were inserted into each 
pot as support for the climbing beans. Drip irrigation was used twice 
a week to ensure well-watered growth conditions. A total of 136 lines 
were evaluated in two glasshouse trials (CKA20D, n=86 and CKA20E, 
n=85 lines), in a partially replicated design with four check lines in six 
replicates (Fig. 1A, B). The PPFR and temperature were measured every 
minute by a LI-COR sensor (LI-COR, Inc., Lincoln, NE, USA) and a 
HMP110 temperature sensor (Vaisala, Helsinki, Finland), respectively, at 
~0.5 m above the pots. No artificial heating or lighting was used in the 
glasshouse.

Field
Plants were grown in the field in Darién, Colombia (3°53'31''N, 
76°31'00''W, altitude of 1491 m a.s.l.) and in Palmira (3°30'03.0''N, 
76°21'03.5''W, altitude of 965 m a.s.l.) as described by Keller et al. 
(2022a). Briefly, the trials in Darién, Dar18B (n=120 lines) and Dar19B 
(n=126 lines), were sown in the second season of the year in 2018 and 
2019, respectively. The trial in Palmira (Pal19D, n=117 lines) was sown in 
the fourth season of the year in 2019. The soil types were an Inceptisol 
and Mollisol in Darién and in Palmira, respectively. The plants were 
treated and irrigated according to the standard CIAT protocol and em-
pirical knowledge of the field. The PPFR values were recorded by the 
MultispeQ during every measurement. A total of 127 lines were evalu-
ated in the field in 1–3 replicates (Fig. 1C, D).

Phenotyping
The light-induced fluorescence transient (LIFT) and the MultispeQ 
devices measured photosynthetic performance under incident sunlight in 
the glasshouse and field, respectively. Both devices measure the Fq'/Fm' by 
probing the ChlF signal. Additionally, the LIFT device measures the full 
reflectance spectrum on the measured target while the MultispeQ is lim-
ited to only several spectral bands. Finally, biomass and grain yield were 
measured by destructive phenotyping at harvest.

Light-induced fluorescence transient
The ChlF and spectra were measured using the LIFT-REM device 
(Soliense Inc., New York, NY, USA), mounted on an automated platform 
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Fig. 1.  Photosynthesis measurements based on probed chlorophyll fluorescence (ChlF) of climbing bean lines in the glasshouse and field. (A) Scans 
in the glasshouse were carried out by an automated light-induced fluorescence transient (LIFT) system under fluctuating conditions. (B) Climbing bean 
lines were arranged in pots (gray symbols) and the operating efficiency of PSII (Fq'/Fm') was measured (green) every hour of a measurement day over two 
growing seasons. Examples of a single measurement run at 12.00 h of the two glasshouse trials are shown (n=688 respective 700 measurements). (C) 
The Fq'/Fm' was measured by hand-held MultispeQ devices in the field on 14 d in three growing seasons. (D) Examples of a single measurement day of 
the three field trials are shown (n=1879, 1359, and 1203 measurements, respectively). (E) In total, 178 climbing bean lines were phenotyped and partially 
replicated in the five trials. The two glasshouse trials (CKA20D and CKA20E) were carried out at Campus Klein-Altendorf in 2020 in Germany whereas 
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that scans the pots from a distance of 1.5 m in the glasshouse (Fig. 1A). 
Measurements were automated by scanning the plant canopy at a speed 
of 3 cm s−1, as described by Keller et al. (2019a). Briefly, ChlF measure-
ments were acquired by using a fast repetition rate flash (FRRF) every 
1.5 s. The FRRF generates ~40 000 µmol photons m−2 s−1 of blue light 
(445 nm) with an excitation circle of 7 cm2 at a distance of 60 cm. The 
focus was then adjusted and optimized to a measuring distance of 1.25 
m with a dynamic range of ~20 cm, optimizing the measurements for 
leaves between 15 cm and 35 cm above the ground. The minimum ChlF 
yield was determined by the first flashlet, and the maximum ChlF yield 
(Fm') was the average of the 301st and 302nd flashlet (Keller et al., 2019b). 
The difference between the two ChlF yields represents the variable ChlF 
(Fq'), which is used to calculated Fq'/Fm' (Baker, 2008). Spectral measure-
ments were acquired between the FRRFs through the LIFT lens using 
the LIFT’s integrated STS-VIS spectrometer (Ocean Insight, Orlando, 
FL, USA). Wavelengths were recorded between 400 nm and 800 nm with 
a resolution of 0.46 nm and an acquisition time of 1 s. This resulted in 
~3 measurements per pot and hour of a measurement day. The MERIS 
terrestrial chlorophyll index (MTCI) was calculated as:

MTCI = (R754−R710) / (R710+R680)
�  (1)

where R indicates the wavelength. The photochemical reflectance index 
(PRI) and normalized difference vegetation index (NDVI) were calcu-
lated as described in Keller et al. (2022b).

MultispeQ
The hand-held MultispeQ v.1 (PhotosynQ, USA) was used to acquire 
Fq'/Fm' in the field (Kuhlgert et al., 2016). The adaxial leaf side of upper, 
fully irradiated, youngest, but already developed, leaves was measured 
in the early mornings (09.00 h–11.00 h) and early afternoons (13.00 
h–15.00 h) to capture all possible phenotypic variability and to get in-
formation on genotype acclimation. Measurements were taken from 
the central part of the trifoliate, avoiding the central vein. The measured 
height was set at ~1.5 m, according to the growth stage and development 
of each line. The previous measurements showed that plant height from 
where the measurements were taken did not significantly affect the values 
(comparing fully developed leaves on the outer canopy; data not shown). 
The relative chlorophyll content was estimated by the transmitted red 
(650 nm) and infrared (940 nm) light using a series of measurements 
under increasing light intensities (Markwell et al., 1995; Kuhlgert et al., 
2016). The spectral bands were calibrated using color cards provided by 
the manufacturer. All three trials were measured using the Photosynthesis 
RIDES no open/close protocol (photosynq.org/protocols).

Grain yield and agronomic traits
Agronomic traits, especially grain yield, for the VEC lines are publicly 
available (Keller et al., 2022a). To determine above-ground biomass 
grown in the glasshouse, plants per pot were cut at the soil level, dried at 
75 °C for 48 h, and weighed.

Data preparation

Grain yield and biomass
For the glasshouse trails, each biomass phenotype (yijkl) was modeled with 
an effect for the experiment (Ei), the line (Lj), the G×E (LEij), the row 
(rowk), and the column (columnl) of the pots:

yijkl = Ei + Lj + LEij + rowk + columnl + εijkl�  (2)

The adjusted means for biomass were then extracted over both trials as 
well as for each separate trial, for each breeding line.

Regarding the three field trials, the spatially corrected adjusted means 
for grain yield and seed iron concentration (SdFe) overall and for the field 
trials separately were taken from Keller et al. (2022a).

Operating efficiency of PSII (Fq'/Fm')
Measurements under low light conditions (>100 µmol photons m−2 s−1) 
and, for the LIFT, with a signal-to-noise ratio <30 were discarded. All 
variables were cleaned for outliers which were more distant from the 
median than 2.5 times the interquartile range. The LIFT measurements 
were associated with the corresponding pot (breeding line) according to 
the position of the platform recorded every 30 cm (Fig. 1). The measure-
ments were then associated with the corresponding PPFR value recorded 
in the same minute.

Regarding the field trials, the MultispeQ device was used to measure 
Fq'/Fm' and the environmental variables.

Modeling of Fq'/Fm'

Basic line model
Measured Fq'/Fm' values (yjm) were modeled in each experiment sepa-
rately using fixed effects for each breeding line j (Lj), for the square root 
of PPFR at time point m (Pm), and for the interaction between line and 
the square root of PPFR (LPjm), as well as an error term (εjm):

yjm = µ+ Lj + Pm + LPjm + εjm�  (3)

For the field trials, Lj was replaced by a plot effect to account for spatial 
variability in the field (even between the same lines).

Line model with interaction for the glasshouse and field
To obtain adjusted means and responses for the glasshouse and field, 
model (3) included a fixed effect for each experiment (Ei) and an 
interaction between experiment, line, and PPFR at time point m 
(ELPijm). To account for the absorbance of the incoming light, an 
effect was added for the spectral index MTCI and the relative chlo-
rophyll content (Am) at the time point m for the LIFT and MultispeQ 
device, respectively. To account for light heterogeneity at the top of 
the canopy, the reflectance (Bm) at time point m was used to model 
Fq'/Fm' derived from LIFT canopy scans in the glasshouse. In the 
field, the Fq'/Fm' values measured at the leaf level were corrected 
for an effect for each of the MultispeQ devices. This resulted in the 
following model for Fq'/Fm' values (yijm) with the associated error 
term (εijm):

yijm = µ+ Ei + Lj + Pm + ELPijm + Am + Bm + εijm�  (4)

Adjusted means and responses for Fq'/Fm' were separately calculated for 
the glasshouse and the field experiments. Fq'/Fm' data points were classi-
fied as measurement error and discarded when they were a Cook’s dis-
tance farther from the median than 50 times the upper quartile range. 
Breeding lines with <30 available measurements were discarded from the 

the three field trials (Dar18B, Dar19B, and Pal19D) took place in Darién (Dar) and Palmira (Pal) in Colombia in 2018 and 2019. The number of lines for 
each trial is given in parentheses. (F) Probability density diagram of the acquired Fq'/Fm' and its associated photosynthetic photon fluence rate (PPFR) and 
temperature values for the five trials (n=77 780 measurements).
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analysis to ensure robust regression results. Previously, the sum of squares 
for each variable was calculated by adding the explanatory variables PRI, 
NDVI, relative chlorophyll content, and air temperature as additive effects 
for each line at time point m, as: Cm =

∑Q
q=1 cmq ∗ γq , where Q is the 

number of additional explanatory variables, cmq is the measured value of 
the qth variable at time point m, and γq is the main effect (coefficient) for 
each variable. This extension of model (4) resulted in:

yijm = µ+ Ei + Lj + Pm + ELPijm + Am + Bm + Cm + εijm

�  (5)

The variables constituting Cm were dropped in model (4) because they 
explained <1.5% of the variance.

Response to PPFR
From models (3) and (4), the adjusted genotypic means for Fq'/Fm' 
and the response of Fq'/Fm' to PPFR (ResponseG:PPFR) were extracted 
over all trials and separately for the glasshouse and field trials using the 
emmeans R package, as described by Keller et al. (2022b). Briefly, the 
ResponseG:PPFR refers to the coefficients bELP corresponding to the ELP 
term as ELP={ELPijm}=bELP×ZLE×XP where ZLE is a design matrix for 
the lines in each experiment and XP is a vector of the PPFR values. In 
other words, bELP describes the slope of the Fq'/Fm' values with increasing 
PPFR for each breeding line.

Statistical analysis

Correlation analysis
Adjusted means for biomass and grain yield were correlated to the 
ResponseG:PPFR of each breeding line separately for the glasshouse and 
the field trials based on model (4). Pearson correlation coefficient (r) was 
then calculated.

Post-hoc significance analysis
The Tukey HSD test was used to perform post-hoc significance anal-
ysis between the lines in the upper and lower 20% percentiles of the 
ResponseG:PPFR as well as the lines in between (intermediate), forming 
three different groups in terms of photosynthetic energy conversion 
efficiency.

Heritability calculation
Heritability (H2) of the derived ResponseG:PPFR was calculated between 
the different experiments based on model (4). Heritability of the biomass 
was calculated based on model (2). In both cases, the following equation 
was used:

H2 =
σL

(σL + σε
√
n)

�  (6)

where σL was the variance of the breeding lines, and σε the error variance, 
which was divided by the averaged number of replicates (n̄) to account 
for the unbalanced design.

Genomic predictions
The GEBV for biomass and grain yield were calculated for three dif-
ferent models using the Bayesian generalized linear regression (BGLR) R 
package (Pérez and de los Campos, 2014). A Gaussian prior was assumed 
for the random effects. The Gibbs sampler generated 16 000 iterations of 
which the first 4000 were burned-in and the remainder were thinned by 

factor 5. Genomic information for 14 913 single nucleotide polymor-
phism (SNP) markers was already available for the climbing bean lines 
(Keller et al., 2022a).

Basic genotype model
In the genotype model, the phenotype (yij) was described as the sum of a 
fixed effect for the ith experiment (Ei), a random effect for the jth geno-
type (gj) and the error εij:

yij = Ei + gj + εij�  (7)

where g ~N(0,Kσg
2) with K as the kinship matrix. The kinship matrix 

based on the SNP matrix was calculated using the rrBLUP package.

G×E model
In the G×E model, an interaction effect between the ith location and the 
jth genotype (gEij) was added:

yij = Ei + gj + gEij + εij�  (8)

where gE ~N(0,I ⊗ KσgE
2) with I as the identity matrix for the experi-

ments and ⊗ denotes the Kronecker product.

G×Ec model
In the G×Ec model, the location effect was replaced (parameterized) 
by measured values, namely the ResponseG:PPFR (vi), in the ith environ-
ment. Additionally, an interaction effect between the ith environmental 
covariates—in this case the physiological covariates (V=vvʹ)—and the jth 
genotype (gVij) was added:

yij = Ei + vj + gij + gVij + εij�  (9)

with v ~N(0,V σv
2), gV ~N(0,V ⊗ Kσg

2), and ε ~N(0,Iσε
2).

Cross-validation
Cross-validation was carried out to predict new lines in an observed en-
vironment (CV1) and new lines in a new environment (CV2). CV1 gives 
information about the prediction accuracy within one trial while CV2 
represents a more practical situation where new lines are predicted for 
a new season (i.e. environment). CV1 and CV2 were calculated for all 
three models presented. In the case of model (9), the ChlF data would be 
known for all lines; that is the ResponseG:PPFR would also be available for 
new lines and in a new environment. The cross-validation was 60-fold 
where the dataset was randomly divided into three parts 10 times and 
each part was validated based on the training of the remaining two-thirds 
of the dataset.

Genome-wide association study
GWAS was carried out using the Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) algorithm from 
GAPIT (Huang et al., 2019). The first three principal components of the 
SNP matrix were used to correct for population structure as described 
for this climbing bean panel in Keller et al. (2022a). SNP markers with 
a minor allele frequency <5% were excluded. The effect of significant 
markers was visualized using boxplots for the trials of the current study 
and for six previous trials carried out by Keller et al. (2022a) and two 
trials by Barbosa et al. (2018). Candidate genes were identified within 
a region with a maximal distance of 100 000 bp from an identified sig-
nificant marker–trait association and based on their relationship to the 
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photosynthetic apparatus using gene annotations from Phytozome v13 
(Goodstein et al., 2012).

Data visualization
Plots were done in R using ggplot2 with ggh4x extension (Wickham, 
2016). The magick R package was used for images (Ooms, 2023).

Results

The Fq'/Fm' of climbing bean lines was assessed throughout the 
growing season by taking ~700 measurements per hourly scan 
in the glasshouse (Fig. 1A, B) and ~1500 measurements per 
day in the field (including morning and afternoon measure-
ments; Fig. 1C, D). Between 80 and 126 lines per trial were 
phenotyped, resulting in 178 lines of which 26 were meas-
ured in all five trials (Fig. 1E). A total of 79 645 measurements 
were acquired over the growing seasons in 57 d under fluc-
tuating conditions (Fig. 1F). The associated weather data rep-
resented the growing conditions, which varied across the five 
trials. PPFR and temperature in particular varied between the 
glasshouse and field trials. The PPFR and temperature values 

were highest in the Palmira field trial (Pal19D) and lowest in 
the CKA20E glasshouse trial. The PPFR explained 10.3% and 
69.9% of the variance for Fq'/Fm' in the glasshouse and field 
trials using model (5), respectively (Tables 1, 2). Additionally, 
~1% was explained by the square root of PPFR. Air temper-
ature as well as the measurement dates accounted for <1% of 
the variation for Fq'/Fm'. Reflectance and MTCI explained 
7.0% and 4.6% of the variation for Fq'/Fm', respectively, in the 
glasshouse canopy scans (Table 1), while relative chlorophyll 
content explained 1.7% in the field (Table 2). The breeding 
lines (i.e. the genotypes) explained 10.0% and 1.5% of the var-
iance for Fq'/Fm' in the glasshouse and field trials, respectively.

Light use efficiency and yield

After filtering, Fq'/Fm' was modeled using 61 252 and 11 201 
ChlF measurements taken in the glasshouse and field, respec-
tively (Fig. 2A). The general response of Fq'/Fm' to PPFR 
was more pronounced in low-yielding lines, indicating lower 
light use efficiency (LUE), especially at high PPFR (Fig. 2B). 
The ResponseG:PPFR, calculated according to the basic model 
(3), showed significant correlations with yield in four trials 
(Supplementary Fig. S2). This highlights the importance of the 
response of Fq'/Fm' to PPFR for biomass production, although 
the ResponseG:PPFR (i.e. the Line:PPFR interaction) explained 
<1% of the variation for Fq'/Fm' (Tables 1, 2). Model (4) calcu-
lated the ResponseG:PPFR with additional effects for chlorophyll 
content, reflectance, and device ID. This model showed slightly 
higher correlations between ResponseG:PPFR and yield, ranging 

Table 1.  Explanatory variables of the operating efficiency of PSII 
(Fq'/Fm') in two climbing bean glasshouse trials

Explanatory variable df Sum of squares Explained variance

(%)

Trial 1 163.757 22.253
PPFR 1 75.915 10.316
Line 130 73.529 9.992
Reflectance 1 51.271 6.967
MTCI 1 33.618 4.568
Trial:Line 34 12.463 1.694
Trial:MTCI 1 11.428 1.553
sqrt(PPFR) 1 7.662 1.041
PPFR:Line 130 7.6 1.033
PRI 1 5.502 0.748
NDVI 1 5.268 0.716
Temperature 1 2.647 0.36
Date 1 2.504 0.34
MTCI:NDVI 1 2.455 0.334
Trial:MTCI:NDVI 1 0.868 0.118
Trial:PPFR:Line 34 0.57 0.077
Trial:NDVI 1 0.425 0.058
Trial:Reflectance 1 0.093 0.013
Trial:PPFR 1 0.024 0.003
Residuals 62 741 278.302 37.818

The degrees of freedom (df), associated sum of squares, explained 
variance, and the residual are calculated using linear regression according 
to model (5). The explanatory variables were trial, photosynthetic photon 
fluence rate (PPFR), line, MERIS terrestrial chlorophyll index (MTCI), 
normalized difference vegetation index (NDVI), photochemical reflectance 
index (PRI), reflectance, the square root (sqrt) of PPFR, temperature, and 
date, as well as the interactions between variables denoted by the ‘:’ 
symbol. In total, 66 550 data points of 131 breeding lines were acquired 
by automated chlorophyll fluorescence (ChlF) measurements.

Table 2.  Explanatory variables of the operating efficiency of PSII 
(Fq'/Fm') in three climbing bean field trials

Explanatory variable df Sum of squares Explained variance

(%)

PPFR 1 54.525 69.917
Trial 2 3.019 3.872
Chlorophyll 1 1.314 1.686
Line 126 1.176 1.508
Trial:Line 234 0.851 1.091
Trial:Device.ID 13 0.845 1.083
Trial:PPFR:Line 234 0.685 0.879
Date 13 0.649 0.832
sqrt(PPFR) 1 0.563 0.722
PPFR:Line 126 0.49 0.629
Temperature 1 0.007 0.009
Trial:PPFR 2 0.001 0.001
Residuals 12 340 13.859 17.771

The degrees of freedom (df), associated sum of squares, explained 
variance, and the residual are calculated using linear regression according 
to model (5). The explanatory variables were photosynthetic photon 
fluence rate (PPFR), trial, line, relative chlorophyll content, date, and 
temperature, as well as the interactions between variables denoted by the 
‘:’ symbol. In total, 13 095 data points of 127 breeding lines were acquired 
by hand-held chlorophyll fluorescence (ChlF) measurements.
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Fig. 2.  Dynamic photosynthesis is linked to biomass and yield. (A) Operating efficiency of PSII (Fq'/Fm') was measured under a fluctuating photosynthetic 
photon fluence rate (PPFR) over the season in five trials (n=72 453 selected in colors; discarded data points in gray; total n=77 780). (B) The Fq'/Fm' was 
related to PPFR modeled with a square root term for the 20% percentile of high-yielding (solid line) and low-yielding lines (dotted line). (C) The response of 
Fq'/Fm' to PPFR (ResponseG:PPFR) was modeled according to model (4) and correlated to biomass and yield. Light gray areas show the 95% confidence 
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from r=0.22 to 0.35 (Fig. 2C). The diagnostic plots showed that 
model residuals were independent over time, had constant var-
iance, and no significant deviation from a normal distribution, 
indicating reasonable model fits (Supplementary Fig. S3). In 
contrast to ResponseG:PPFR, the adjusted mean of Fq'/Fm' was 
not shown to be a reliable predictor of biomass (Supplementary 
Fig. S4). A significant effect on yield was observed when lines 
were grouped according to the calculated ResponseG:PPFR. The 
breeding lines in the lower 20% quantile of the ResponseG:PPFR, 
corresponding to a high ϵe, showed significantly higher yield 
compared with the lines in the upper 20% quantile in four out 
of five trials (Supplementary Fig. S5). This result confirms that 
the trait ResponseG:PPFR can be used as a selection target to 
identify lines with increased yield potential.

Correlation of traits and heritability

The ResponseG:PPFR values of the three field trials were pos-
itively correlated (Supplementary Fig. S6). An analysis of this 
trait across the field trials resulted in a heritability of 0.21 
(Supplementary Table S1). In contrast, the ResponseG:PPFR 
values of the two glasshouse trials were negatively correlated 
and, therefore, had a heritability of 0.15. These results indicate 
strong G×E effects, reflecting different growing conditions. The 
heritabilities of biomass in the glasshouse and grain yield in 
the field were higher, 0.36 and 0.53, respectively. The overall 
ResponseG:PPFR between the three field trials and the two glass-
house trials was uncorrelated, as was biomass to grain yield (Fig. 
3). However, both the overall ResponseG:PPFR of the glasshouse 
and field trials were significantly correlated with biomass and 
grain yield (r=0.23 and 0.26), respectively, demonstrating pre-
diction stability under similar growth conditions. Interestingly, 
above-ground biomass from the glasshouse trials correlated 
positively with SdFe evaluated in the field trials (r=0.19).

Genomic assisted predictions

The genomic predictions of biomass and grain yield according 
to models (7) to (9) resulted in different prediction accura-
cies. The interaction terms in the G×E and G×Ec models, 
generally increased the prediction accuracy in the five trials 
(Fig. 4A). The variance explained by the genotype [i.e. the 
molecular markers as described in the basic genotype model 
(7)] ranged from 26.4% to 50.6% (Fig. 4B). Comparing the 
variance components of the G×E model (8) and the G×Ec 
model (9), the effects of the interaction term were similar (Fig. 
4B). This result indicates that the ResponseG:PPFR as covariate 

was almost sufficient to describe all the G×E effects on the 
yield. With early-stage phenotypic information available (the 
ResponseG:PPFR in our study), the G×E model (8) performed 
best when predicting new lines in an observed environment 
(CV1) and new lines in a new environment (CV2) (Fig. 4C). 
The G×Ec model (9) achieved averaged prediction accuracies 
between 0.35 and 0.38, an increase in CV2 of 53.1% com-
pared with the G×E model (8). When predicting new lines in a 
new environment (CV2), the prediction accuracy of the G×E 
model (8) was similar to the basic genotype model (7), indi-
cating strong year-to-year effects. Using only genomic data, 
the highest accuracies were obtained in both Darién trials. 
However, only one of these trials (Dar19B) exceeded previous 
phenomic prediction accuracy (without any genomic data, Fig. 
2).

Genome-wide association study for photosynthetic 
response

Investigating genetic control over photosynthesis, GWAS re-
vealed a significant association between ResponseG:PPFR and the 
SNP marker (Chr09_37766289_13052) on Chr 9 at 37.77 Mbp 
in the Dar18B trial (Fig. 5A, B). Although not significant in the 
remaining trials, the effect of this marker was also observed in 
the CKA20D glasshouse and the Pal19D field trials (Fig. 5C). 
Furthermore, this marker caused pleiotropic effects on yield 
and SdFe in the complete VEC population including 290 lines 
evaluated in eight and four trials (Barbosa et al., 2018; Keller 
et al., 2022a), respectively (Supplementary Fig. S7). However, 
the marker was significant neither for yield nor for SdFe 
(Supplementary Fig. S8), suggesting that the ResponseG:PPFR 
was a rather stable physiological component of those more 
complex traits. In fact, this marker (Chr09_37766289_13052) 
showed a positive effect on yield in six out of the eight field 
trials. That was more stable than several markers for yield iden-
tified in these trials (Supplementary Fig. S9). A candidate gene 
(Phvul.009G258500) expressing a curvature thylakoid 1 pro-
tein was identified in proximity at 37.84 Mbp, which could be 
responsible for the improved photosynthetic response.

Discussion

Photosynthesis is a promising target for improving crop pro-
duction, because the energy conversion efficiency of sunlight 
to biomass continues to show high genetic variation even in 
high-yielding breeding lines (Zhu et al., 2010; Driever et al., 

interval of the regression line. Contrasting breeding lines for ResponseG:PPFR within the 20% percentile of high-yielding lines (dashed line) are labeled. 
Gray error bars show the SEM. The significance of the Pearson correlation coefficient (r) is indicated as ***P<0.001; **P<0.01. The two glasshouse trials 
(CKA20D and CKA20E) were carried out at Campus Klein-Altendorf in 2020 in Germany whereas the three field trials (Dar18B, Dar19B, and Pal19D) took 
place in Darién (Dar) and Palmira (Pal) in Colombia in 2018 and 2019.
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Fig. 3.  Correlations of overall adjusted means between photosynthetic and agronomic traits. The traits were grain yield, response of Fq'/Fm' to PPFR 
(ResponseG:PPFR) of the field trials, days to flowering (DF), seed iron concentration (SdFe), biomass, and ResponseG:PPFR of the glasshouse (GH) trials. The 
diagonal shows a density diagram with the estimated distribution of the phenotypes (n=131 lines in the greenhouse and n=127 lines in the field; total 
n=178 lines). The significance of the Pearson correlation coefficient (r) from pairwise observations (with non-missing values) is indicated as ***P<0.001; 
**P<0.01; *P<0.05. Missing values were imputed using the population mean (shown in gray) and were only used to display complete pairwise 
observations.

2014; Keller et al., 2022b). Our study highlights the potential 
of automated high-throughput ChlF measurements for the se-
lection of thousands of breeding lines in early generations. This 
approach is valid in the new environments and when there is a 
possibility to use similar high-throughput techniques, especially 

where genomic selection is still very expensive. The positive re-
lationship between ResponseG:PPFR and biomass production was 
shown using single pot experiments (potentially single plants; we 
used two plants per pot) in the glasshouse. The data trends were 
confirmed with hand-held instruments in field conditions.
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Solar energy conversion and yield

The relationship between Fq'/Fm' and PPFR tended towards a 
linear response, a known result in field plants grown under fluc-
tuating light conditions, and its slope was a robust yield predictor 
(Meacham et al., 2017; Vialet-Chabrand et al., 2017; Keller et al., 
2022b). Breeding lines which tolerate or benefit from high light 

intensities—showing a low ResponseG:PPFR and a high ϵe—have 
potential for high LUE and high yield (Keller et al., 2022b). 
Identified lines with low ResponseG:PPFR values and high yield 
(Fig. 2C) indicated (i) high transduction efficiency of photo-
chemical energy to biomass, which may result from high root 
and stem conductivity and efficient carbon and mineral parti-
tioning and (ii) the potential for higher yields of those lines when 
improving photosynthetic efficiency (Driever et al., 2014). In the 
climbing bean lines studied, additional variation for symbiotic ni-
trogen fixation was reported by Barbosa et al. (2018), which may 
also contribute to differences in ϵe. In grain legumes, the costs 
of nitrogen fixation increase sink strength, emphasizing conver-
sion efficiency as a breeding target. These findings highlight the 
potential of the source–sink ratio as well as photosynthesis as 
breeding targets (Evans and Clarke, 2019; Wu et al., 2023).

Canopy and leaf photosynthesis

All trials and conditions in the current study showed a positive re-
lationship between plant photosynthetic performance and yield. 
This result confirmed that ResponseG:PPFR, as suggested by Keller 
et al. (2022b), is a robust yield indicator, regardless of whether 
the bean leaves were measured from the top of the canopy via 
automated measurements, or directly at the leaf level via hand-
held devices. However, the residuals were much higher in the 
glasshouse at the canopy level (37.8%, Table 1) than in the field 
at the leaf level (17.8%, Table 2). This finding probably represents  
the very different conditions in the field and glasshouse, where the 
lower PPFR affected the distribution of the residuals. It is likely 
that the spectral indices in the presented model (4) accounted 
partially for canopy structure and differences in leaf angles rather 
than in leaf pigment composition (Keller et al., 2019a). Relative 
chlorophyll content showed a minor influence on Fq'/Fm', be-
cause it determines light absorption at the leaf level and further 
distribution into the canopy (Acebron et al., 2023).

The top leaves of the canopy are the most important part 
to measure because ~70% of solar energy is absorbed by 
the outer canopy (Song et al., 2013). In soybean, Roth et al. 
(2022) showed that varieties with early canopy closure have 
higher yield, highlighting the importance of high light inter-
ception efficiency. However, quantifying the influence of the 
inner canopy structure, in terms of photosynthesis and nu-
trient re-assimilation, may further improve overall phenotyp-
ing precision and generate deeper knowledge on the effect of 
photosynthesis–yield relationship.

Photosynthesis and yield

Lopez et al. (2019) reported correlations between photosynthesis 
and grain yield of up to 0.8 in soybean. In wheat, Gutiérrez-
Rodríguez et al. (2000) and Fischer et al. (1998) reported corre-
lations of up to 0.79 between wheat yield and gs when measured 
under light-saturated conditions (between 1200 µmol m−2 s−1 
and 2000 µmol m−2 s−1). Our correlations were much lower, up 

Fig. 4.  Predictions for biomass and grain yield in the two glasshouse and 
three field trials, respectively, using genomic and chlorophyll fluorescence 
(ChlF) data. (A) The genomic estimated breeding values (GEBVs) 
were calculated based on genotypic data, genotype by environment 
interaction (G×E), and interaction between genotype and the covariate 
(G×Ec) as described in models (7) to (9). The response of Fq'/Fm' to 
PPFR (ResponseG:PPFR) was used as covariate. The Pearson correlation 
coefficient (r) between measured and predicted value represents the 
prediction accuracy either of new lines in known environments or new 
lines in new environments. The two glasshouse trials (CKA20D, n=86 
and CKA20E, n=80) were carried out at Campus Klein-Altendorf in 2020 
in Germany, whereas the three field trials (Dar18B, n=120; Dar19B, 
n=126; and Pal19D, n=117) took place in Darién (Dar) and Palmira (Pal) in 
Colombia in 2018 and 2019. (B) The variance components for each model 
are shown in relative size. (C) Boxplot for biomass and yield prediction 
accuracy using two different 60-fold cross-validation scenarios and the 
three different models. The dashed line shows the square root of the 
spatial corrected heritability.
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Fig. 5.  The genome-wide association study (GWAS) for response of Fq'/Fm' to PPFR (ResponseG:PPFR) of the five trials. (A) Manhattan plots showing 
the log-transformed P-value for every marker–trait association. The SNP markers are displayed according to their physical position on the genome. 
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to 0.43. The main reason for this difference is that we derived 
ChlF differently. Our method measured ET, which is subject 
to greater losses for biomass production than CO2 assimilation, 
which occurs in between these two processes. Importantly, this 
means that when breeding lines are selected using ChlF, both 
high transduction efficiency and low photorespiration are prob-
ably included as ‘hidden’ selection traits. The lower prediction 
accuracy in our study using ChlF is sufficiently compensated by 
the possibility of automation, which allows significantly higher 
throughput than gasometric measurements. Additionally, the 
difference in measurements between ET and CO2 assimilation 
facilitates selection of lines with less photorespiration. However, 
this point needs to be verified by testing the hypothesis that 
photorespiration is genetically diverse and varies in different 
environments, as recently reported for wheat lines (Coast et al., 
2019, 2021). Nevertheless, the current study showed a signifi-
cant increase in yield when selecting for low ResponseG:PPFR, 
namely high ϵe and LUE (Supplementary Fig. S5). Overall, the 
robust correlations between photosynthetic performance and 
yield are promising targets for increasing selection intensity in 
breeding programs.

Genetic control of photosynthetic response

One of the field trials identified a significant marker–
ResponseG:PPFR association on chromosome 9 at 37.77 Mbp 
(Fig. 5). This association was also visible (although not signif-
icant) in another field trial as well as in one glasshouse trial. 
Our results suggest some common genetic control under these 
different conditions, despite the lack of phenotypic correlation 
for ResponseG:PPFR between glasshouse and field conditions. 
Furthermore, the identified marker showed a positive effect on 
grain yield and a negative effect on SdFe in previous field trials 
described by Keller et al. (2022a), suggesting that SdFe was 
likely diluted by increased photosynthates (Supplementary Fig. 
S7). Importantly, the marker was not detected with GWAS for 
grain yield, indicating ResponseG:PPFR as a distinct, but physi-
ological and causal component of yield. The genomic region 
of the marker revealed a candidate gene (Phvul.009G258500 
at 37.84 Mbp, a curvature thylakoid 1 protein) controlling 
the formation of chloroplasts (Sandoval-Ibáñez et al., 2021). 
Interestingly, the GmFtsH25 gene was recently identified in 
soybean, where it increases photosynthesis under high light 
intensities and alters chloroplast structure, allowing a denser 
stacking of the thylakoids (Wang et al., 2023). Our quantitative 
trait locus (QTL), however, needs validation in further studies, 
especially to clarify under which conditions it is effective. In 
a much larger population including bush beans, Keller et al. 

(2022a) identified another QTL for days to flowering in close 
proximity (<60 000 bp away) to our photosynthetic QTL. On 
chromosome 9, at 25.29 Mbp, Leitão et al. (2021) reported a 
QTL for gs under glasshouse conditions using 158 common 
bean accessions. In conclusion, the ResponseG:PPFR probably 
contributed to yield as one of several physiological compo-
nents which is rather stable across environments.

Phenomic or genomic selection?

Genomic data were used to predict grain yield and agronomic 
traits in 178 climbing bean lines. Our prediction accuracy was 
lower than that reported by Keller et al. (2022a), most probably 
due to the smaller pool of climbing bean lines in the training 
set. In bush beans, Keller et al. (2020) showed that the training 
set needed >200 lines to achieve the highest genomic predic-
tion accuracy in an elite breeding panel. Additionally, pheno-
typic data collected at early stages in early-generation breeding 
plots have been shown to improve yield prediction (Rutkoski 
et al., 2016). The ResponseG:PPFR used in our study showed po-
tential to add information about the particular environment in 
which new lines are to be predicted. The low correlation be-
tween ResponseG:PPFR across trials, resulting in low broad-sense 
heritability, underlined that photosynthesis generally reflects the 
specific growing conditions in each trial (Keller et al., 2019a), 
which is useful information for site-specific predictions. In 
agreement with this statement, the ResponseG:PPFR almost com-
pletely described different environments, comparing the vari-
ance components of the G×E model (8) and the G×Ec model 
(9). Furthermore, phenomic predictions using ResponseG:PPFR 
achieved even better prediction accuracy than the genomic pre-
diction model (8) for new environments, except for one of the 
Darién trials (compare Fig. 2C with Fig. 4C). Similarly, in soy-
bean, phenomic prediction outperformed genomic predictions 
in terms of accuracy (Lopez et al., 2019). Combining phenomic 
and genomic data, as in the G×Ec model (9), increased the pre-
diction accuracy in general. However, having phenotypic infor-
mation of lines available in the newly used environment is not 
a realistic CV2 scenario for any breeding program. Acquiring 
phenotypic information, however, is very useful when geno-
typic information is not yet available and yield is difficult to as-
sess, as is the case for selection in early generation breeding lines.

Conclusion

Photosynthetic performance has been shown to be a critical 
yield component. Using automated photosynthesis pheno-
typing, biomass was predicted by the ResponseG:PPFR in >130 

The Bonferroni-corrected significance level is indicated at 5% with a solid line. (B) The quantile–quantile plot of expected and observed P-values 
for every marker. (C) Boxplot of ResponseG:PPFR according to allele dosage (0, 1, or 2 alternative alleles) of the significantly associated marker 
(Chr09_37766289_13052) for all five trials. The two glasshouse trials (CKA20D, n=86; and CKA20E, n=80) were carried out at Campus Klein-Altendorf 
in 2020 in Germany whereas the three field trials (Dar18B, n=120; Dar19B, n=126; and Pal19D, n=117) took place in Darién (Dar) and Palmira (Pal) in 
Colombia in 2018 and 2019. D
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common bean breeding lines in single pots. The phenomic pre-
diction method also proved to be effective in the field using 
hand-held devices. Compared with genomic prediction based 
on molecular markers, phenomic prediction was more accurate 
in four out of five trials. Importantly, this suggests that phenomic 
prediction can be used as an early selection target, for example in 
F3 or F4 individuals in progeny rows, to screen large numbers of 
plants. Since the phenotyping accounts for G×E, breeding pro-
grams can improve selection and better understand adaptation, 
especially in new environments. Similarly, the identified signif-
icant association between marker (Chr09_37766289_13052) 
and the ResponseG:PPFR trait may be used for marker-assisted 
selection on a physiological yield component where markers 
directly linked to yield are not stable throughout the environ-
ments. In contrast, genomic prediction was more accurate in 
a known location, confirming its potential to select more ad-
vanced (or phenomically pre-selected) breeding lines based on 
training data from the same or a similar location.

Supplementary data

The following supplementary data are available at JXB online.
Table S1. Heritability (H2) by trait and conditions.
Fig. S1. Climbing bean lines at 43 days after sowing.
Fig. S2. Adjusted means of operating efficiency of PSII 

(Fq'/Fm') and the response of Fq'/Fm' to PPFR (ResponseG:PPFR) 
were modeled according to the basic model (3) and correlated 
to biomass and yield.

Fig. S3. Diagnostic plots for the residuals from operating ef-
ficiency of PSII (Fq'/Fm') values using model (4) for all trials.

Fig. S4. Adjusted means of operating efficiency of PSII 
(Fq'/Fm') and the response of Fq'/Fm' to PPFR (ResponseG:PPFR) 
were modeled according to the basic model (4) and correlated 
to biomass and yield.

Fig. S5. Breeding lines grouped for the response of Fq'/Fm' to 
PPFR (ResponseG:PPFR) differ in yield in all five trials.

Fig. S6. Correlations of adjusted means between traits and 
trials. The traits were yield, biomass, and response of Fq'/Fm' to 
PPFR (ResponseG:PPFR) of the five trials.

Fig. S7. Allele dosage effect for days to flowering (DF), seed 
iron concentration (SdFe), and grain yield of the molecular 
marker (Chr09 37766289 13052) on chromosome 9 at 37.77 
Mbp significantly linked to response of Fq'/Fm' to PPFR 
(ResponseG:PPFR).

Fig. S8. The genome-wide association study (GWAS) for bi-
omass, grain yield, and seed iron concentration (SdFe) of all 
available climbing bean (VEC) trials.

Fig. S9. Allele dosage effect for response of Fq'/Fm' to PPFR 
(ResponseG:PPFR) and yield of significantly associated molec-
ular marker identified in trials with the climbing bean popu-
lation (VEC).

Dataset S1. Chlorophyll fluorescence (ChlF) data from the 
field trials acquired by the MultispeQ device.

Dataset S2. Chlorophyll fluorescence (ChlF) data from the 
glasshouse trials acquired the light-induced fluorescence tran-
sient (LIFT) device.

Dataset S3. Biomass data from the glasshouse trials.
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