001017528 001__ 1017528
001017528 005__ 20231030201849.0
001017528 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04177
001017528 037__ $$aFZJ-2023-04177
001017528 1001_ $$0P:(DE-Juel1)185961$$aFrahm, Lennart$$b0$$eCorresponding author
001017528 1112_ $$aINM Retreat$$cJülich$$d2023-10-17 - 2023-10-18$$wGermany
001017528 245__ $$aPredictive Modeling of Significance Thresholding in Activation Likelihood Estimation Meta-Analysis
001017528 260__ $$c2023
001017528 3367_ $$033$$2EndNote$$aConference Paper
001017528 3367_ $$2BibTeX$$aINPROCEEDINGS
001017528 3367_ $$2DRIVER$$aconferenceObject
001017528 3367_ $$2ORCID$$aCONFERENCE_POSTER
001017528 3367_ $$2DataCite$$aOutput Types/Conference Poster
001017528 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1698671972_24462$$xAfter Call
001017528 500__ $$aAcknowledgments:This study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/11-1 &International Research Training Group 2150, 269953372/GRK2150), the National Institute of Mental Health (R01-MH074457), the National Institute of Aging: (P30-AG066546), and the Jülich-Aachen Research Alliance (JARA) granting computation time on the supercomputer JURECA (Jülich Supercomputing Centre, 2018) at ForschungszentrumJülich.
001017528 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001017528 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b1
001017528 7001_ $$0P:(DE-HGF)0$$aSattterthwaite, Theodore D.$$b2
001017528 7001_ $$0P:(DE-HGF)0$$aFox, Peter T.$$b3
001017528 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b4
001017528 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5
001017528 8564_ $$uhttps://juser.fz-juelich.de/record/1017528/files/Frahm_INM%20Retreat_cutoffpred.pdf$$yOpenAccess
001017528 909CO $$ooai:juser.fz-juelich.de:1017528$$popenaire$$popen_access$$pVDB$$pdriver
001017528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185961$$aForschungszentrum Jülich$$b0$$kFZJ
001017528 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185961$$a RWTH Aachen$$b0
001017528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b1$$kFZJ
001017528 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b1
001017528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b4$$kFZJ
001017528 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131693$$a HHU Düsseldorf$$b4
001017528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
001017528 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5
001017528 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001017528 9141_ $$y2023
001017528 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017528 920__ $$lyes
001017528 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001017528 9801_ $$aFullTexts
001017528 980__ $$aposter
001017528 980__ $$aVDB
001017528 980__ $$aUNRESTRICTED
001017528 980__ $$aI:(DE-Juel1)INM-7-20090406