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Abstract It was demonstrated in a series of papers employ-
ing unitarized chiral perturbation theory that the phe-
nomenology of the scalar open-charm state, the D∗

0(2300),
can be understood as the interplay of two poles, correspond-
ing to two scalar-isospin doublet states with different SU(3)
flavor content. Within this formalism the lightest open charm
positive parity states emerge as being dynamically gener-
ated from the scattering of the Goldstone-boson octet off D
mesons, a picture that at the same time solves various prob-
lems that the experimental observations posed. However,
in recent lattice studies of Dπ scattering at different pion
masses only one pole was reported in the D∗

0 channel, while
it was not possible to extract reliable parameters of a sec-
ond pole from the lattice data. In this paper we demonstrate
how this seeming contradiction can be understood and that
imposing SU(3) constraints on the fitting amplitudes allows
one to extract information on the second pole from the lattice
data with minimal bias. The results may also be regarded as
a showcase how approximate symmetries can be imposed in
the K -matrix formalism to reduce the number of parameters.

1 Introduction

The discovery of the charm-strange mesons D∗
s0(2317) [1]

and Ds1(2460) [2] with masses significantly lower than
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the predictions for the lowest-lying scalar and axial-vector
cs̄ mesons from the quark model (see, e.g., Ref. [3]) in
2003 lead to intensive discussions on their nature. Closely
related to these two hadrons, there were observations of
broad bumps in the Dπ and D∗π invariant mass distribu-
tions in B decays by BaBar, Belle and LHCb Collaborations
[4–7]. The bumps were fitted using a Breit-Wigner (BW)
parametrization with energy-dependent widths, assuming the
existence of one broad scalar (axial-vector) resonance cou-
pled to D(∗)π ; accordingly, such fits led to the D∗

0(2300)

and D1(2430) entries that are listed in the Review of Particle
Physics (RPP) [8]:

MD∗
0

= 2343 ± 10, �D∗
0

= 229 ± 16,

MD1 = 2422.1 ± 0.6, �D1 = 411.8 ± 0.6 , (1)

where all numbers are given in units of MeV.
However, the use of a BW form is not justified in these

cases as constraints from chiral symmetry and coupled chan-
nel effects are not taken into account, see e.g. [9]. Those are
automatically built into unitarized chiral perturbation theory
(UChPT), where all calculations find two D∗

0 mesons and two
D1 mesons in the same energy region as the D∗

0(2300) and
D1(2430), respectively [10–17].1 All these works tell a qual-
itatively coherent story, although e.g. the role of left-hands

1 What is meant here is that there are two states coupling to
the πD(∗) channel predominantly in S-wave, instead of only one
D∗

0 (2300)/D1(2430). Clearly, in addition to these states there is also
the narrow D1(2420), decaying into πD∗ predominantly in D-wave
(up to heavy quark spin symmetry violating contributions) which has a
width of about 30 MeV.
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cuts still needs be agreed upon [17,18]. For instance, the
parameters in the UChPT amplitude used in Refs. [14,15]
are fixed from fitting to the results of a set of S-wave
charmed-meson–light-pseudoscalar-meson (D�) scattering
lengths computed using lattice quantum chromodynamics
(QCD) [19]. The two D∗

0 poles in the UChPT amplitude
of Refs. [14,15,19] are located at 2105+6

−8 − i102+10
−11 MeV

and 2451+35
−26 − i134+7

−8 MeV. And it was demonstrated in
Refs. [9,15] that the amplitudes are consistent with the LHCb
data of the angular moment distributions from three-body B
meson decays: B− → D+π−π− [20], B0

s → D̄0K−π+
[21], B0 → D̄0π−π+ [6], B− → D+π−K− [22], and
B0 → D̄0π−K+ [7]. For a review on two-pole structures in
QCD, see [23].

In seeming disagreement to these findings, the lattice QCD
analysis of the Dπ -Dη-Ds K̄ coupled channel system by
the Hadron Spectrum Collaboration (HadSpec) in Ref. [24]
reported only one D∗

0 state just below the Dπ threshold,
with the pion mass of about 391 MeV. In this paper, we will
discuss whether the higher D∗

0 pole is consistent with the
lattice data, and propose a K -matrix formalism constrained
with the SU(3) flavor symmetry that can be used in analyzing
coupled-channel lattice data.

2 Analysis of the amplitude from the lattice study

In Ref. [24] lattice data for the strangeness zero, isospin-1/2
channel at a pion mass of about 391 MeV were presented and
analyzed with a sizable set of K -matrix parametrizations of
the kind

Ki j =
(
g(0)
i + g(1)

i s
) (

g(0)
j + g(1)

j s
)

m2 − s
+ γ

(0)
i j + γ

(1)
i j s, (2)

where i and j label the different reaction channels and m,
g(n)
i and γ

(n)
i j are real parameters to be determined in the fit

to the lattice data. From this, the T -matrix for the S-wave
coupled-channel (Dπ -Dη-Ds K̄ ) scattering is given by

T (s) = −16π TK (s), (3)

with TK (s) defined as

T−1
K (s)i j = K−1(s)i j +

(
I (i)
CM(s) − I (i)

CM(m2)
)

δi j , (4)

where the second term on the right-hand side contains the
Chew–Mandelstam function, subtracted at the K -matrix pole
parameter m. It is given by

I (i)
CM(s) = ρi (s)

π
log

[
ξi (s) + ρi (s)

ξi (s) − ρi (s)

]

−ξi (s)

π

m(i)
2 − m(i)

1

m(i)
1 + m(i)

2

log
m(i)

2

m(i)
1

, (5)

with

ξi (s) = 1 −
(
m(i)

1 + m(i)
2

)2

s
, (6)

ρ2
i (s) = ξi (s)

(
1 − (m(i)

1 − m(i)
2 )2

s

)
, (7)

where m(i)
1 and m(i)

2 are the masses of the two particles in
channel i and s is the centre-of-mass (c.m.) energy squared.
The imaginary part of T−1

K (s)i j is then given by the phase-

space factor −δi jρ jθ
(√

s − m(i)
1 − m(i)

2

)
, which automati-

cally ensures the unitarity of the S-matrix.
The nine parametrizations presented in Ref. [24] differed

by the set of parameters that was allowed to vary in the course
of the fit. The parameters present in the different amplitudes
along with their reduced χ2 values from energy level fits
performed in Ref. [24] are given in Table 1.

2.1 Pole search

The T -matrix is analytic over the whole complex energy
plane except for poles and branch cuts along the real axis
due to kinematic (right-hand cuts) and dynamic singularities
(left-hand cuts). Dynamic singularities (left-hand cuts) are
associated with the interactions in the crossed channels. Since
those are usually distant, one assumes that their effect can be
captured by polynomial terms allowed in the parametriza-
tion of the K -matrix used. Right-hand cuts start from branch
points that appear whenever a channel opens. Accordingly,
at each threshold the number of Riemann sheets of the com-
plex energy (or s) plane gets doubled. Thus, the three-channel
case studied here leads to eight Riemann sheets. The sheets
are labeled as shown in Table 2, where the thresholds are
arranged with increasing energies 1 = Dπ , 2 = Dη and
3 = Ds K̄ . For illustration we show in Fig. 1 the analogous
labeling for two channels. See Fig. 3 of Ref. [25] for the
three-channel case.

The poles correspond to bound states or resonances
depending on their location on the Riemann sheets. Bound
states correspond to poles on the physical sheet below the
lowest threshold energy and resonances are poles in the com-
plex plane of the unphysical sheets (in addition there are
virtual state poles, located on the real axis of unphysical
sheets, but those do not play a role in this work). The poles
on the sheets closest to the physical sheet have the strongest
influence on the scattering amplitude. In the current notation
sheets RS211, RS221, and RS222 would be directly con-
nected to the physical sheet, i.e., RS111, above the respective
thresholds (c.f. Fig. 1). The poles of the T -matrix are given
by the zeroes of the determinant of the matrix in Eq. (4), i.e.,

det
(
K−1(s) + (ICM(s) − ICM(m2))

)
= 0. (8)
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Table 1 The parametrizations used in the analysis in Ref. [24]. The check mark denotes a free parameter and “–” implies the parameter is fixed to
zero. The channels are denoted with increasing threshold energies, with 1 = Dπ , 2 = Dη and 3 = Ds K̄

Parametrization m g(0)
i g(1)

i γ
(0)
i j γ

(1)
i j χ2/dof

1 2 3 1 2 3 11 12 13 22 23 33 11 12 13 22 23 33

Amplitude 1 – – – – – – – – – – 1.76

Amplitude 2 – – – – – – – – – – – 1.71

Amplitude 3 – – – – – – – – – – – – 1.76

Amplitude 4 – – – – – – – – – – – – – 1.78

Amplitude 5 – – – – – – – – – – – – 1.89

Amplitude 6 – – – – – – – – – – – 1.63

Amplitude 7 – – – – – – – – – – – – 1.68

Amplitude 8 – – – – – – – – – – 1.68

Amplitude 9 – – – – – – – – – – 1.66

Table 2 The notation of the
Riemann sheets with the sign of
the imaginary part of the c.m.
momentum of each channel

Riemann sheet Sign of imaginary part of channel momentum

RS111 Im(p1) > 0 Im(p2) > 0 Im(p3) > 0

RS211 Im(p1) < 0 Im(p2) > 0 Im(p3) > 0

RS221 Im(p1) < 0 Im(p2) < 0 Im(p3) > 0

RS222 Im(p1) < 0 Im(p2) < 0 Im(p3) < 0

RS121 Im(p1) > 0 Im(p2) < 0 Im(p3) > 0

RS112 Im(p1) > 0 Im(p2) > 0 Im(p3) < 0

RS212 Im(p1) < 0 Im(p2) > 0 Im(p3) < 0

RS122 Im(p1) > 0 Im(p2) < 0 Im(p3) < 0

Fig. 1 Illustration for the sheet labeling in the case of two channels

The unphysical sheets can be accessed by adding the dis-
continuity across the branch cut to Eq. (4). Via the Schwarz
reflection principle the discontinuity across the branch cut is
related to the imaginary part of the amplitude by

Disc [TK (s)] = TK (s+iε) − TK (s − iε)

= 2i Im[TK (s+iε)], (9)

where Im[TK (s+iε)] needs to be understood as the analytic
continuation of the imaginary part of the amplitude on the
real axis above threshold.

Crossing from the physical sheet (RS111) to any sheet can
be done by

T−1
K ,X (s) = T−1

K (s) + DiscX [T−1
K (s)], (10)

where the subscript X stands for the sheet number and Disc is
a 3 × 3 matrix containing the relevant discontinuities needed
for the sheet transition, e.g. for the transition from RS111 to
RS211 we employ

Disc211 T
−1
K = 2i

⎡
⎣

−ρ1 0 0
0 0 0
0 0 0

⎤
⎦ , (11)

and for RS111 to RS221

Disc221 T
−1
K = 2i

⎡
⎣

−ρ1 0 0
0 −ρ2 0
0 0 0

⎤
⎦ . (12)

This prescription is straightforwardly generalized to arbitrary
transitions between sheets.
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Table 3 The pole locations from amplitude parametrizations of Ref.
[24], in units of MeV. Empty slots denote that a pole was not found
within the search range for the particular parametrization on the cor-

responding sheet. In the last line the results for the UChPT amplitude
employed in Ref. [14] are given for comparison

Amplitudes RS111 RS211 RS221 RS222

Amplitude 1 2275.92 2720+150
−89 − i 198+37

−70 3060+210
−120 − i 133+100

−45 3030+260
−130 − i 430+210

−120

Amplitude 2 2275.92 2717+99
−51 − i 204+45

−47 3070+190
−110 − i 141+120

−55 3080+230
−120 − i 420+200

−120

Amplitude 3 2275.92 3710+210
−180 − i 706+150

−87 3880+210
−200 − i 1153+110

−79

Amplitude 4 2275.94 3710+230
−170 − i 461+150

−64 3840+260
−180 − i 763+130

−58

Amplitude 5 2276.04 2789+590
−54 − i 27+210

−27 3560+130
−110 − i 311+98

−42 3680+140
−120 − i 601+91

−40

Amplitude 6 2275.70 2618+64
−50 − i 240+56

−35 3075+85
−67 − i 240+51

−38 3162+100
−82 − i 349+64

−45

Amplitude 7 2275.98 2652+70
−53 − i 291+57

−41 3096+100
−80 − i 300+51

−36 3180+120
−91 − i 410+70

−55

Amplitude 8 2275.70 2621+90
−67 − i 242+34

−31 3064+66
−59 − i 251+45

−55 3141+80
−74 − i 318+96

−48

Amplitude 9 2275.92 2673+28
−25 − i 182+23

−26 2866+38
−40 − i 154+13

−11 2909+38
−38 − i 274+26

−22

UChPT 2263+8
−14 2633+79

−43 − i 114+11
−12 2467+32

−25 − i 113+18
−16 3000+290

−110 − i 93+21
−15

At a pion mass of about 391 MeV, the lowest pole in
the studied channel turns out to be a bound state, accord-
ingly located on sheet RS111 [24]; the same conclusion was
reached in UChPT in Ref. [14]. This pole was found in the fits
of all 9 parametrizations employed by the Hadron Spectrum
Collaboration [24]. At the same time, additional poles were
found on sheets RS211, RS221, and RS222. These additional
poles were found for almost all amplitude paramterizations
employed in Ref. [24], which were, however, not reported
in the publication since they not only scatter very much, but
also are in parts located outside the energy region where the
fit was performed. Table 3 shows the pole values found from
the search with the corresponding sheets from the different
amplitude parametrizations. The 1σ uncertainties of the pole
values were calculated by the bootstrap method.

Graphically the poles on RS221 are displayed in Fig. 2. In
the following we focus the discussion on this sheet, since this
is the one where the UChPT amplitude has its most promi-
nent higher D∗

0 pole at physical [15] as well as the unphys-
ical meson masses employed in the lattice study [14]. The
plots of the pole locations of the higher pole for the different
parametrizations on the other Riemann sheets that connect
closely to the physical axis (RS211 and RS222) are shown in
the Appendix. Table 4 gives the location of the corresponding
two particle thresholds.

Figures 2 and 13 in the Appendix and Table 3 clearly
show two important features of the poles extracted from dif-
ferent parametrizations: (i) There is a significant correlation
between real part and imaginary part of the poles, and the
location of the pole extracted from the UChPT analysis is in
line with that correlation. (i i) All poles are located on hidden
sheets, which are the sheets that are not directly connected
to the physical sheet. For example, the RS221 poles are well

Fig. 2 The location of poles on sheet RS221 on the complex energy
plane. The x-axis and y-axis show the real and imaginary part of energy,
respectively. The poles from the amplitude parametrizations employed
in Ref. [24] are shown in yellow. The pole from the UChPT amplitude
[19] is shown in green [14]. The vertical green and blue dashed lines
represent the Dη and Ds K̄ thresholds, respectively. The error bars show
the 1σ statistical uncertainty

above the Ds K̄ threshold. Thus they are all shielded by the
RS222 sheet and their effect on the amplitude can hardly
be seen above the Ds K̄ threshold. As we discuss in the fol-
lowing, both features together guide one to an understanding
that there indeed needs to be a second pole in an amplitude
that describes the lattice data and that it is natural that the
original analysis performed on the lattice data lead to badly
constrained pole locations. The mechanism underlying this
is that the distance from the threshold is overcome by an
enhanced residue. This mechanism, also reported e.g. for the
case of the f0(980) and a0(980), was observed before as a
general feature of Flatté amplitudes [26].
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Table 4 The two particle thresholds in MeV for the pion mass of
391 MeV

Channel Threshold [MeV]

Dπ 2276.49

Dη 2472.46

Ds K̄ 2500.51

2.2 Residues and threshold distance

A resonance is characterized by the pole location, tradition-
ally parametrized as
√
sp = M − i�/2. (13)

Please note that the parameters M and �, derived from the
pole location, agree to those found e.g. in the BW fits only
for narrow, isolated resonances—for details see the review
on resonances in Ref. [8]. Equally fundamental resonance
properties are provided by the pole residues. A pole-residue
quantifies the couplings of the resonance to the various chan-
nels. The residues of a pole located at s = sp are defined as

Ri j = lim
s→sp

(s − sp)Ti j (s). (14)

The residues can be easily obtained using the L’Hôpital rule
to compute the limit:

Ri j =
(

d

ds
T−1
i j

)−1

s=sp

. (15)

Since the residues factorize according to R2
i j = Rii R j j

one can define an effective coupling via

gri = Ri j/
√
R j j , (16)

which has dimension [mass]. The index r is meant to dis-
tinguish the residues from the parameters gi that appear in
the K -matrix in Eq. (2). The couplings gri characterize the

transition strengths of the resonance to the channel. Those
residues can also be extracted from production reactions and
are independent of how the resonance was produced.

Since the poles of interest here are hidden, their effect on
the physical axis is visible only at the thresholds irrespec-
tive of their exact pole locations. Moreover, the visible effect
in the amplitude on the physical axis from a pole on a hid-
den sheet close to the threshold with a small residue is in
fact hardly distinguishable from a faraway pole with a large
residue. We regard this ambiguity as the most natural expla-
nation for the large spread in the pole locations found in the
analysis of the lattice data reported above.

To test this hypothesis, we now study the strengths of
the residues as functions of the distance of the poles to the
threshold. Clearly, there is some ambiguity in how to quantify
the distance from the threshold. Since the channel couplings
also drive the size of the imaginary part of the pole location
and we want to avoid counting the effect of those couplings
twice, we choose instead of

√
(M − Mthr.)2 + (�/2)2, which

might appear more natural on the first glance,

Dist = M − Mthr. (17)

as a measure for the distance of the pole to the threshold. The
pole mass M that appears above was introduced in Eq. (13)
and Mthr. denotes the threshold location relevant for the given
sheet, e.g. in case of RS221 we have Mthr. = MK + MDs .

Table 5 shows the distance of the RS221 pole from the
Ds K̄ threshold along with the square root of the absolute
value of the residue to the three channels. The graphical rep-
resentation for the Dπ -Dπ channel is shown in Fig. 3 (left).
A straight line is fit to the data to extrapolate the values at the
threshold. The fitting was done using the MINUIT algorithm
[27] from the iminuit interface [28,29]. The uncertainties of
the fit parameters quoted are from the MIGRAD routine of
MINUIT. The 1σ statistical uncertainty of the fitted line was
calculated using the bootstrap technique. From the straight

Table 5 Distance of the RS221
pole from the Ds K̄ threshold
and the square root of its residue
to the respective channels in
MeV for the amplitude
parametrizations obtained in
Ref. [24]. In the last line the
results for the UChPT amplitude
employed in Ref. [14] are given
for comparison

Amplitudes Dist. from Ds K̄ thr. [MeV] |grDπ | [GeV] |grDη | [GeV] |gr
Ds K̄

| [GeV]

Amplitude 1 554+212
−115 9+2

−2 7+1
−1 9+2

−2

Amplitude 2 570+194
−110 9+2

−1 7+2
−1 9+1

−1

Amplitude 3 1211+205
−177 16+3

−2 12+2
−2 11+1

−1

Amplitude 4 1208+226
−170 13+3

−2 10+2
−1 10+1

−1

Amplitude 5 1057+127
−107 12+3

−2 9+2
−2 10+1

−1

Amplitude 6 596+103
−80 8+1

−1 8+1
−1 6.3+0.9

−0.8

Amplitude 7 575+85
−67 7+1

−1 8.5+0.8
−0.6 6.3+0.7

−0.8

Amplitude 8 563+66
−59 6.8+0.8

−0.9 8.3+0.9
−0.7 6+3

−2.

Amplitude 9 366+38
−40 8.6+0.3

−0.3 5.1+0.2
−0.2 6.8+0.6

−0.6

UChPT −34+32
−25 5.2+0.6

−0.4 6.7+0.6
−0.4 13+2

−1

123
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Fig. 3 The distance of the real part of the pole on sheet RS221 from the Ds K̄ threshold versus the effective coupling of the pole to the Dπ channel
(left), Dη channel (middle) and Ds K̄ channel (right). The red line shows the straight line fit. The red band encloses the 1σ uncertainty of the fit

line fit the y-intercept was found to be at (5.8 ± 0.9) GeV.
The graphical representation for corresponding distances
and residues for the Dη-Dη and the Ds K̄ -Ds K̄ channel
is given in Fig. 3 (middle) and (right). The fit to the Dη

(Ds K̄ ) residues provides an intercept of (2.4 ± 0.8) GeV
((4.6 ± 0.9) GeV). The corresponding results for the poles
on sheets RS211 and RS222 are shown in the Appendix.

While the linear fits shown do not provide an excellent rep-
resentation of the extracted data for the different channels,
they illustrate nicely that there is indeed a significant correla-
tion between the distance of the poles from the threshold and
the residues. In addition, the effect of the poles at threshold,
encoded in the y intercepts deduced from the fits, is rather
well constrained by the fits. We interpret this observation
such that the lattice data require not only one bound state
pole but also a higher pole as was also found in the various
studies employing UChPT [10–15,17].

An interesting question is, if it is possible to come up
with a parametrization to be used in the K -matrix fit that
constrains better the pole location of the higher pole, with
inputs of approximate symmetries of QCD. This will be the
focus of the next section.

3 SU(3) symmetry

The parametrization dependence of the higher pole location
calls for a stronger constrained amplitude. In the following
we present a prescription of the K -matrix consistent with
the SU(3) flavor symmetry. In the resulting scattering matrix
SU(3) breaking comes only from the Chew–Mandelstam
functions introduced in Eq. (5). Clearly, for the physical pion
mass and low energies such a treatment is not justified, since
the leading order chiral interaction scales with the energies
of pion and kaons for Dπ and Ds K̄ scattering, respectively,
which induces a sizeable SU(3) flavor breaking into the scat-
tering potential. However, in this study we work at higher

= 2

= 1

= 0

= −1

Fig. 4 Weight diagrams of the [15], [6] and [3̄] representations

pion masses which leads to a much smaller pion-kaon mass
difference. Moreover, we are mainly interested in the higher
mass range, where the second pole is located. Under such
circumstances the leading SU(3) breaking effect is induced
by the loop functions which bring the cut structure to the
amplitudes.

The flavor structure of the D� interaction can be written
as a direct product of an anti-triplet for the charmed mesons
and an octet for the light pseudoscalar mesons. The direct
product can be decomposed into a direct sum of the [3̄],
[6] and [15] irreducible representations. Figure 4 shows the
multiplet structure.

The SU(3) flavor basis and the isospin-symmetric particle
basis are related via

⎛
⎝

|[3̄]〉
|[6]〉
|[15]〉

⎞
⎠ = U

⎛
⎝

|Dπ〉
|Dη〉

|Ds K̄ 〉

⎞
⎠ , (18)

where

U =
⎛
⎝

−3/4 −1/4 −√
3/8√

3/8 −√
3/8 −1/2

1/4 3/4 −√
3/8

⎞
⎠ . (19)

From the rotation matrix U , we may read off the following
expressions for the SU(3) symmetric coupling structure of
the Dπ , Dη and Ds K̄ (I = 1

2 , S = 0) coupled-channel

123
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system:

C3̄ =
⎛
⎝

−3/4
−1/4

−√
3/8

⎞
⎠ (−3/4 −1/4 −√

3/8
)

= 3

8

⎛
⎝

3/2 1/2
√

3/2
1/2 1/6

√
1/6√

3/2
√

1/6 1

⎞
⎠ , (20)

C6 =
⎛
⎝

√
3/8

−√
3/8

−1/2

⎞
⎠ (√

3/8 −√
3/8 −1/2

)

= 1

2

⎛
⎝

3/4 −3/4 −√
3/8

−3/4 3/4
√

3/8
−√

3/8
√

3/8 1/2

⎞
⎠ , (21)

C15 =
⎛
⎝

1/4
3/4

−√
3/8

⎞
⎠ (

1/4 3/4 −√
3/8

)

= 3

8

⎛
⎝

1/6 1/2 −√
1/6

1/2 3/2 −√
3/2

−√
1/6 −√

3/2 1

⎞
⎠ . (22)

The form of the K -matrix assuming the existence of two bare
poles, in contrast to the one used in Ref. [24] which contains
only one bare pole, reads

K =
(

g2
3̄

m2
3̄
− s

+c3̄

)
C3̄ +

(
g2

6

m2
6 − s

+c6

)
C6 + c15 C15.

(23)

Here the two bare poles are assumed to be in the two SU(3)
multiplets with S-wave attractions from the leading order
chiral dynamics [14]. We have seven free parameters in total,
gα , cα and mα . The overall factors in Eq. (22) are absorbed
into the parameters of gα , cα . If there was no SU(3) constraint,
a K -matrix with the same number of bare poles would contain
3 more parameters (a constant K matrix is symmetric and
thus contains 6 parameters, instead of 3 cα’s here).

With Eqs. (4) and (5), the T -matrix TK (s) can be calcu-
lated in the same way as in Sect. 2. The subtraction point for
the Chew–Mandelstam function of the fits is chosen identical
to the parameter m 3̄.

4 Fitting to lattice energy levels

Here we employ the flavor SU(3) constrained K -matrix to
fit the lattice energy levels in the Dπ c.m. frame obtained in
Ref. [24]. To this end, we need to relate the T -matrix defined
with the K -matrix in the continuum system and the energy
levels in the finite volume system. In this study, we employ
the scheme based on the effective field theory framework

developed in Ref. [30]. Below we briefly summarize this
scheme.

With the Lippmann–Schwinger equation, the T -matrix in
the continuum can be written as

T (s) = 1

V−1(s) − G(s)
, (24)

where V (s) is the interaction matrix and G(s) is the diagonal
matrix of the scalar two-meson loop functions [31]. With the
momentum cut-off regularisation G(s) is given by

Gii (s) =
|�q|<qmax∫

d3 �q
(2π)3

1

2ω
(i)
1 (|�q|)ω(i)

2 (|�q|)

× ω
(i)
1 (|�q|) + ω

(i)
2 (|�q|)

s − (ω
(i)
1 (|�q|) + ω

(i)
2 (|�q|)2

, (25)

ω
(i)
1,2(�q) =

√
m2(i)

1,2 + �q2, (26)

where qmax is the cut-off momentum and m(i)
1,2 are the masses

of the two particles in channel i . Similarly to Eq. (24), the
T -matrix in a finite volume system T̃ satisfies

T̃ (s) = 1

Ṽ−1(s) − G̃(s)
, (27)

where Ṽ (s) and G̃(s) are the interaction and loop function
in the finite volume system, respectively. With the spatial
extension L of the cubic box, G̃(s) is given as

G̃ii (s) = 1

L3

|�q|<qmax∑
�q

1

2ω
(i)
1 (|�q|)ω(i)

2 (|�q|)

× ω
(i)
1 (|�q|) + ω

(i)
2 (|�q|)

s − (ω
(i)
1 (|�q|) + ω

(i)
2 (|�q|))2

, (28)

with

�q = 2π

L
�n, �n ∈ Z

3. (29)

Since V (s) is equal to Ṽ (s) up to exponentially suppressed
corrections, the T -matrix in the finite volume system T̃ is
related to the T -matrix in the infinite volume T by

T̃ (s) = 1

T−1(s) − �G(s)
, (30)

with

�Gii = G̃ii (s) − Gii (s). (31)

The lattice energy levels, which we need to fit, correspond to
the zeroes of the determinant of T̃−1 provided in Eq. (30).
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Table 6 The best fit values arrived in the different fits to the lattice energy levels of Ref. [24] based on Eq. (23), along with their χ2/dof. The
symbol ‘–’ is used for parameters set to zero (or absent) in the particular fit

g3 [GeV] m 3̄ [MeV] g6 [GeV] m6 [MeV] c3̄ c6 c15 χ2 χ2/dof

Fit 1_4L 2.92 ± 0.39 2275.1 ± 0.6 0.32 ± 0.32 2542 ± 50 4 ± 3 0.7 ± 0.4 −0.6 ± 0.2 7.1 1.4

Fit 2_4L 2.31 ± 0.14 2274.5 ± 0.8 0.66 ± 0.17 2560 ± 37 – – −0.6 ± 0.2 14 1.9

Fit 3_4L 2.91 ± 0.39 2275.1 ± 0.6 1.20 ± 0.62 2735 ± 266 4 ± 2 – −0.6 ± 0.2 7.3 1.2

Fit 4_4L 3.16 ± 0.38 2275.3 ± 0.6 – – 5 ± 2 1.0 ± 0.2 −0.4 ± 0.2 8.2 1.2

Fit 4_All 2.4 ± 0.2 2274.8 ± 0.6 – – 1.1 ± 0.4 0.54 ± 0.06 −0.26 ± 0.09 29.6 2.1

Fig. 5 Comparison of the energy levels from data and the fits. The
energy levels from Ref. [24] are shown in yellow. The energy levels
used as input in the fits are shown as circles and those not used is shown
as crosses. The energy levels from Fit 1_4L, Fit 2_4L, Fit 3_4L and
Fit 4_4L are shown in red, blue, black and light blue, respectively. The
solid(dashed) red, green and blue lines show the Dπ , Dη and Ds K̄
non-interacting energy levels(thresholds) respectively

4.1 Results for the fits employing SU(3) constraints

We performed four different fits to the rest frame lattice
energy levels in Ref. [24] using the MINUIT algorithm [27]
with the Julia interface to the iminuit package [28,29]:

– in Fit 1_4L all the parameters in Eq. (23) are included;
– in Fit 2_4L we fix c3̄ = 0 and c6 = 0;
– in Fit 3_4L we fix c6 = 0;
– in Fit 4_4L we fix g6 = 0 to omit the explicit pole term

of [6] (and thus m6 is absent).

From every volume we use the lowest four energy levels
(thus the addition _4L to the fit names) of the [000] A+

1 irre-
ducible representation,2 where the S-wave component gives
the dominant contribution. In the next subsection we dis-
cuss the fit results for Fit 4_All that was performed including

2 We did not implement the discretization of our amplitude for moving
frame data, since this is technically a lot more demanding and the use-
fulness of the SU(3) symmetry constraint can already be demonstrated
with the rest frame fits.

all the rest frame lattice levels. The obtained parameters for
the different fits as well as the χ2 values found are listed
in Table 6. Figure 5 shows the energy levels obtained from
the fits together with the data points in the lattice rest frame.
The uncertainties of the fit parameters quoted are from the
MIGRAD routine of MINUIT. Further, using the parameters
from the fit, the poles of the T -matrix in the continuum on
the different Riemann sheets are extracted. The resulting pole
positions can be found in Table 7. It turns out that, contrary
to the pole extraction employing Eq. (2), now in all fits the
higher mass pole has a mass of about 2.5 GeV and is thus
located close the Dη and Ds K̄ thresholds (see Fig. 6)

A more detailed comparison of the performance of the fits
shows that for [3̄] both a pole term and a constant term are
needed to obtain an acceptable fit. Moreover, the uncertain-
ties for the pole parameters that emerged from Fit 1_4L are
a lot larger than for the other fits (in addition the fit even
allows for an additional level very close to the fitting range).
We therefore exclude both Fit 1_4L and Fit 2_4L from fur-
ther discussions. On the other hand, fits of comparable quality
emerge, if either the constant term in the [6] (Fit 3_4L) or
the pole term in the [6] (Fit 4_4L) is abandoned. In the lat-
ter case the higher pole is generated via the unitarization.
Note that in our case the number of parameters connected
to the bound state pole is in any case 2 (one coupling con-
stant and a mass), while in case of the fits performed by the
Hadron Spectrum Collaboration this number is 4, for there
an individual coupling is needed for each channel. The dif-
ference in the number of parameters needed for the [3̄] and
the [6] channels can be understood straightforwardly from
the observation that the pole in the [3̄] is a bound state and
further parameters are needed to obtain a decent fit of the
additional energy levels. The pole originated in the [6], on
the other hand, sits rather high up in the spectrum, having a
larger imaginary part, and thus naturally controls all energy
levels that have a sizable contribution from this representa-
tion; either the bare pole or the constant term in [6] provides
a seed for the [6] pole.

Table 7 also shows that in all fits poles appear on RS222
above the Ds K̄ threshold, however, with large uncertainties
especially on the mass parameters. Since in this energy range
RS222 connects directly to the physical sheet, these poles
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Table 7 The pole locations from the different fits

Fits RS111 RS211 RS221 RS222

Fit 1_4L 2275.1+0.6
−0.6 − 0i 2515+88

−19 − 23+19
−88i 2476+136

−109 − 253+181
−120i 2544+151

−46 − 18+18
−69i

Fit 2_4L 2274.5+0.8
−0.7 − 0i 2498+9

−10 − 20+7
−6i 2503+12

−13 − 42+19
−22i 2518+19

−21 − 63+31
−44i

Fit 3_3L 2275.1+0.6
−0.6 − 0i 2512+22

−67 − 50+37
−20i 2479+41

−50 − 128+103
−38 i 2571+250

−135 − 314+265
−84 i

Fit 4_4L 2275.3+0.6
−0.6 − 0i 2518+28

−17 − 92+18
−28i 2407+59

−40 − 241+43
−50i 2673+94

−44 − 61+19
−47i

Fit 4_All 2274.8+0.6
−0.6 − 0i 2681+46

−33 − 263+43
−51i 2516+71

−60 − 479+38
−50i 3123+144

−99 − 359+86
−162i

Fig. 6 Locations of the RS221 poles from the different fits based on
Eq. (23), together with the pole reported in UChPT amplitude [14] in
green, and the various extractions from the amplitudes extracted in Ref.
[24] in yellow. The pole locations from Fit 1_4L, Fit 2_4L, Fit 3_4L
and Fit 4_4L are shown in red, blue, black and light blue respectively.
The green and blue vertical dashed lines represent the Dη and Ds K̄
thresholds, respectively

show up as peaks in the amplitudes at high energies. Note
that analogous poles were also present in the fits performed
in the course of the analysis of Ref. [24] and in the UChPT
amplitude (see Table 3), however, they appeared at signifi-
cantly higher energies. In Fit 1_4L this pole can appear quite
close to the energy region of interest, given the large uncer-
tainty in the mass parameter. We interpret this phenomenon
as reflecting a too large number of parameters in the fit. In
the two best fits, namely Fit 3_4L and Fit 4_4L, on the other
hand, the poles on RS222 are typically located deep inside
the complex plane or rather high above the threshold, respec-
tively, although within uncertainties it can appear rather close
to threshold also for Fit 3_4L, with leads to the strong rise
very close to the higher thresholds. The large spread in the
amplitudes above the Ds K̄ threshold visible in Fig. 8 reflects
the bad determination of the highest pole from the lattice data
included in the fits.

A comparison of the RS111 pole locations from the SU(3)
fits just reported and that the UChPT amplitude [14] and Ref.
[24] is shown in Fig. 7. As expected the location of this bound
state pole is consistent amongst all extractions.

Fig. 7 Locations of the RS111 poles from the different fits together
with the RS111 pole in the UChPT amplitude [14] and from HadSpec
[24]

Note that in all fits the constant term in the [15] represen-
tation turns out to be repulsive, in line with the expectations
from leading order chiral perturbation theory. This is a nice
and in fact non-trivial confirmation of the hypothesis that,
even at pion masses as high as 391 MeV, already leading
order chiral perturbation theory provides valuable guidance
for the physics that leads to the emergence or not appearance
of hadronic molecules.

We also tested if we can fit the lattice data when replac-
ing the pole term in the [6] representation by a pole in the
[15]. Those fits, however, did not converge and are there-
fore not reported in the figures and tables. The amplitudes
arrived from the fits are shown in Fig. 8, there, however, at

Table 8 The absolute value of the square root of the RS221 pole
residues obtained by the SU(3) flavor constrained K -matrix to the
respective channels

Parameter set |grDπ | [GeV] |grDη | [GeV] |gr
Ds K̄

| [GeV]

Fit 1_4L 12+7
−2 8+2

−2 17+2
−10

Fit 2_4L 5+1
−1 4+1

−1 5+2
−2

Fit 3_4L 10+1
−5 6+1

−3 10+3
−5

Fit 4_4L 11+2
−2 9+3

−2 19+3
−2

Fit 4_All 13.4+0.5
−0.5 8.5+0.8

−0.7 17.8+0.8
−0.9
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significantly higher energies. The appearance of these poles
in a direct consequence of the K -matrix parametrization
employed. Moreover, in Fit 1_4L and Fit 2_4L those poles
are rather close to the threshold

To complete the discussion, in Table 8 we show the square
root of the absolute values of the RS221 pole residues to
the respective channels derived from the fits. Further, Fig. 9
shows the distance of the RS221 pole to the Ds K̄ thresh-

old, as defined in Eq. (17), versus the effective coupling of
the pole to the Dπ , Dη and Ds K̄ channels, respectively.
Besides Fit 4_4L, all values are statistically consistent with
the intercepts arrived at in Sect. 2.2 within errors.

Fig. 8 The resulting amplitudes from the various fits in the form of
ρ2|T |2. The Dπ -Dπ, Dη-Dη and Ds K̄ -Ds K̄ amplitudes are shown
in red, green and blue, respectively. The vertical red, green and blue

dashed lines show the Dπ , Dη and the Ds K̄ thresholds, respectively.
The error bands cover the 1σ statistical uncertainties

Fig. 9 The distance of the real part of the pole on RS221 from the Ds K̄
threshold versus the effective coupling of the pole to the Dπ channel
(left), Dη channel (centre) and Ds K̄ channel (right). The data points
from Fit 1_4L, Fit 2_4L, Fit 3_4L and Fit 4_4L are shown in red, blue,

black and light blue, respectively. Those for the amplitudes obtained in
Ref. [24] are shown in yellow and UChPT amplitude [14] in green. The
green and blue vertical dashed lines show the Dη and Ds K̄ thresholds,
respectively. The error bars represent the 1σ statistical uncertainty
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Fig. 10 The left panel shows the finite volume energy levels arrived
at for Fit 4_4L (only the first four lowest energy levels of each volume
included in the fit), while the right panel shows them for Fit 4_All.
The black crosses are the lattice energy level data. The dark red circles

show the energy levels from the amplitudes. The solid lines show the
non-interacting energy levels while the dashed line shows the thresh-
olds. The Dπ , Dη and Ds K̄ energies are shown in red, green and blue,
respectively

Fig. 11 The resulting amplitudes of Fig 4_ALL in the form of ρ2|T |2.
The Dπ -Dπ, Dη-Dη and Ds K̄ -Ds K̄ amplitudes are shown in red,
green and blue respectively. The vertical red, green and blue lines show
the Dπ , Dη and the Ds K̄ thresholds, respectively. The error bands
cover the 1σ statistical uncertainties

4.2 Inclusion of the higher lattice levels

Our fit amplitudes are formulated as a momentum expan-
sion. Accordingly, to find our main results, we performed
fits with including only the lowest 4 lattice levels at each
volume. However, to check for stability of our findings, we
also performed fits with Fit 3 and Fit 4 to all rest frame levels
([000] A+

1 irrep.)—the resulting fits are labeled as Fit 3_ALL
and Fit 4_All. It turns out that the former parametrization
does not allow for a decent fit (the best χ2/dof we can achieve
is 5.5). It calls for introducing additional bare poles or/and
momentum-dependent contact terms.

In the left panel of Fig. 10 we show a comparison of the
original fit, Fit 4_4L, with the full spectrum, in the right
panel the fit results for Fit 4_All, where the higher levels
are included in the fit. The parameters arrived from the new

Fig. 12 Comparison of locations of the RS221 poles. The pole for
Fit 4_All is shown in red, together with the pole reported in UChPT
amplitude [14] in green, and the various extractions from the amplitudes
extracted in Ref. [24] in yellow. The pole location from Fit 4_4L, when
including only the lower energy levels, is shown in light blue. The green
and blue vertical dashed lines represent the Dη and Ds K̄ thresholds,
respectively

fit are also shown in Table 6. Clearly, the fit is not excel-
lent, however, when compared to only the rest frame levels,
amplitude 4 and amplitude 6 from Ref. [24] reach χ2 values
of 36 and 24, respectively, and are thus of similar quality.
The amplitude plots arrived from Fit 4_All are shown in
Fig. 11. Though the bound state pole does not change, there
is a change in the location of the higher pole in sheet RS221,
which however has a real part similar to that from Fit 4_4L.
The previous pole location (from Fit 4_4L) and the new pole
location found from fitting including the higher energy levels
are shown in Fig. 12. We therefore conclude that it is a stable
result from our analysis that, as soon as SU(3) constraints are
included in the fits, there are always poles close to the Ds K̄
and Dη threshold—we do not find anymore the large scatter
of the original amplitudes.
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5 Summary and discussion

We investigated the pole content of the nine K -matrix
parametrizations provided in Ref. [24] in an analysis of lat-
tice data for open charm states in the (S = 0, I = 1

2 )

channel. In addition to the bound state pole reported in
Ref. [24], in every amplitude additional poles were found
on unphysical Riemann sheets, however, their locations vary
strongly between the different parametrizations. On the other
hand various investigations employing UChPT find that the
structure observed in various experiments in the channel
(S = 0, I = 1

2 ) with open charm originates from the inter-
play of two D∗

0 poles. In this paper we explain the origin of
this seeming contradiction. In particular it is shown that also
in the lattice analysis two poles are needed and that, although
the poles scatter so dramatically in location, their effects on
the amplitudes were comparable in all parametrizations. This
is possible since all poles are located on an hidden sheet,
such that their effect on the scattering amplitude becomes
visible at the threshold. In such a situation the distance from
the threshold can be overcome by an enhanced residue. This
mechanism was observed before as a general feature of Flatté
amplitudes [26].

To discuss the location of the higher pole directly from
the lattice data, we propose to use an amplitude constrained
by SU(3) flavor symmetry. The flavor constrained amplitude
well reproduces the energy levels and produces a pole in
the RS221 sheet close to Dη and Ds K̄ thresholds consistent
to that of the UChPT amplitude. Such an SU(3) symmet-
ric construction of the K matrix may be used in analyzing
other lattice data and also experimental data where multiple
channels are involved.
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Appendix A: Additional information

In this appendix we provide additional Figs. 13, 14 and 15
completing the presentation. In particular we show the anal-
ogous pole analysis for RS221 presented in the main text for
poles on other sheets.

Fig. 13 Pole locations on sheet RS211 (left) and on sheet RS222 (right) of the complex energy plane. The vertical green and blue dashed lines
represent the Dη and Ds K̄ thresholds, respectively. The error bars show the 1σ statistical uncertainty
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Fig. 14 The distance of real part of the pole on sheet RS211 from Dη threshold versus the effective coupling of the pole to the Dπ channel (left),
Dη channel (center) and Ds K̄ channel (right). The red line shows the straight line fit. The red band encloses the 1σ uncertainty of the fit

Fig. 15 The distance of real part of the pole on sheet RS222 from Ds K̄ threshold versus the effective coupling of the pole to the Dπ channel
(left), Dη channel (center) and Ds K̄ channel (right). The red line shows the straight line fit. The red band encloses the 1σ uncertainty of the fit
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