001017537 001__ 1017537
001017537 005__ 20240712084619.0
001017537 0247_ $$2doi$$a10.1016/j.apgeochem.2023.105815
001017537 0247_ $$2ISSN$$a0883-2927
001017537 0247_ $$2ISSN$$a1872-9134
001017537 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04186
001017537 0247_ $$2WOS$$aWOS:001102594700001
001017537 037__ $$aFZJ-2023-04186
001017537 082__ $$a550
001017537 1001_ $$00000-0002-6682-7241$$aMarques Fernandes, Maria$$b0$$eCorresponding author
001017537 245__ $$aAdsorption of Ba and 226Ra on illite: A comparative experimental and modelling study
001017537 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001017537 3367_ $$2DRIVER$$aarticle
001017537 3367_ $$2DataCite$$aOutput Types/Journal article
001017537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698738507_11492
001017537 3367_ $$2BibTeX$$aARTICLE
001017537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017537 3367_ $$00$$2EndNote$$aJournal Article
001017537 520__ $$aIllite, smectite and illite/smectite mixed layers are major phases in various argillaceous rock formations foreseen as potential host rocks for the deep geological disposal of high-level radioactive waste and are important sorbents for cationic radionuclides potentially released in the repository. 226Ra is a critical radionuclide in the safety analysis and an important source of radioactivity in technically enhanced naturally occurring radioactive materials. A comprehensive study was carried out on the adsorption of Ba and Ra on purified homoionic Na-illite (Illite du Puy) over a wide range of experimental conditions (pH, concentration, ionic strength) allowing for the development of a quasi-mechanistic Ba/Ra adsorption model for illite. Ba adsorption isotherms obtained at fixed ionic strength and pH exhibit a non-linear behaviour in the Ba equilibrium concentration range between ∼10−7 and ∼10−2 M. The pH dependent adsorption of trace 226Ra and Ba was investigated at different ionic strengths and evidenced a more pronounced adsorption of 226Ra than Ba on illite. Finally, a competition experiment of trace 226Ra in the presence of increasing Ba concentrations showed an unexpected 226Ra adsorption behaviour which was not observed for montmorillonite in earlier studies. This large set of experimental data could be successfully modelled by Ba/226Ra exchange reactions against Na, together with selectivity coefficients, on two different site types, namely planar sites and high affinity sites. The modelling of the pH dependent adsorption of Ba and 226Ra at high ionic strength and high pH required an additional surface complexation reaction. Two additional exchange sites had to be introduced to quantitatively describe the 226Ra uptake on illite in the 226Ra/Ba competition experiment. The nature of these sites, however, remains unclear. The implementation of the 226Ra adsorption model into predictive transport modelling codes is of key importance for the safety analysis of deep geological disposal of radioactive waste.
001017537 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
001017537 536__ $$0G:(EU-Grant)847593$$aEURAD - European Joint Programme on Radioactive Waste Management (847593)$$c847593$$fNFRP-2018$$x1
001017537 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017537 7001_ $$0P:(DE-Juel1)130364$$aKlinkenberg, Martina$$b1$$ufzj
001017537 7001_ $$0P:(DE-HGF)0$$aBaeyens, Bart$$b2
001017537 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b3$$ufzj
001017537 7001_ $$0P:(DE-Juel1)144040$$aBrandt, Felix$$b4$$eCorresponding author$$ufzj
001017537 773__ $$0PERI:(DE-600)1499242-5$$a10.1016/j.apgeochem.2023.105815$$gp. 105815 -$$p105815 -$$tApplied geochemistry$$v159$$x0883-2927$$y2023
001017537 8564_ $$uhttps://juser.fz-juelich.de/record/1017537/files/Marques%20Fernandes%20et%20al%202023%20Appl%20Geochem.pdf$$yOpenAccess
001017537 909CO $$ooai:juser.fz-juelich.de:1017537$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001017537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130364$$aForschungszentrum Jülich$$b1$$kFZJ
001017537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b3$$kFZJ
001017537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144040$$aForschungszentrum Jülich$$b4$$kFZJ
001017537 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
001017537 9141_ $$y2023
001017537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001017537 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017537 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017537 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL GEOCHEM : 2022$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001017537 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001017537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001017537 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung$$x0
001017537 9801_ $$aFullTexts
001017537 980__ $$ajournal
001017537 980__ $$aVDB
001017537 980__ $$aUNRESTRICTED
001017537 980__ $$aI:(DE-Juel1)IEK-6-20101013
001017537 981__ $$aI:(DE-Juel1)IFN-2-20101013