001017640 001__ 1017640
001017640 005__ 20240223132827.0
001017640 0247_ $$2doi$$a10.3390/polym15214208
001017640 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04256
001017640 0247_ $$2pmid$$a37959890
001017640 0247_ $$2WOS$$aWOS:001100482200001
001017640 037__ $$aFZJ-2023-04256
001017640 041__ $$aEnglish
001017640 082__ $$a540
001017640 1001_ $$0P:(DE-Juel1)178787$$aRivera-Morán, J. Alejandro$$b0
001017640 245__ $$aAnalysing Sources of Error in Total Internal Reflection Microscopy (TIRM) Experiments and Data Analysis
001017640 260__ $$aBasel$$bMDPI$$c2023
001017640 3367_ $$2DRIVER$$aarticle
001017640 3367_ $$2DataCite$$aOutput Types/Journal article
001017640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1699606045_12259
001017640 3367_ $$2BibTeX$$aARTICLE
001017640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017640 3367_ $$00$$2EndNote$$aJournal Article
001017640 520__ $$aMany phenomena observed in synthetic and biological colloidal suspensions are dominated by the static interaction energies and the hydrodynamic interactions that act both between individual particles and also between colloids and macroscopic interfaces. This calls for methods that allow precise measurements of the corresponding forces. One method used for this purpose is total internal reflection microscopy (TIRM), which has been employed for around three decades to measure in particular the interactions between a single particle suspended in a liquid and a solid surface. However, given the importance of the observable variables, it is crucial to understand the possibilities and limitations of the method. In this paper, we investigate the influence of technically unavoidable noise effects and an inappropriate choice of particle size and sampling time on TIRM measurement results. Our main focus is on the measurement of diffusion coefficients and drift velocities, as the influence of error sources on dynamic properties has not been investigated so far. We find that detector shot noise and prolonged sampling times may cause erroneous results in the steep parts of the interaction potential where forces of the order of pico-Newtons or larger act on the particle, while the effect of background noise is negligible below certain thresholds. Furthermore, noise does not significantly affect dynamic data but we find that lengthy sampling times and/or probe particles with too small a radius will cause issues. Most importantly, we observe that dynamic results are very likely to differ from the standard hydrodynamic predictions for stick boundary conditions due to partial slip.
001017640 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001017640 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017640 7001_ $$0P:(DE-Juel1)130789$$aLang, Peter R.$$b1$$eCorresponding author
001017640 773__ $$0PERI:(DE-600)2527146-5$$a10.3390/polym15214208$$gVol. 15, no. 21, p. 4208 -$$n21$$p4208 -$$tPolymers$$v15$$x2073-4360$$y2023
001017640 8564_ $$uhttps://juser.fz-juelich.de/record/1017640/files/polymers-15-04208.pdf$$yOpenAccess
001017640 8767_ $$d2023-11-03$$eAPC$$jZahlung erfolgt
001017640 909CO $$ooai:juser.fz-juelich.de:1017640$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001017640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178787$$aForschungszentrum Jülich$$b0$$kFZJ
001017640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130789$$aForschungszentrum Jülich$$b1$$kFZJ
001017640 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001017640 9141_ $$y2023
001017640 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001017640 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001017640 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001017640 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017640 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:03:07Z
001017640 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:03:07Z
001017640 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001017640 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001017640 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017640 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001017640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:03:07Z
001017640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYMERS-BASEL : 2022$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-02-05
001017640 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPOLYMERS-BASEL : 2022$$d2024-02-05
001017640 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001017640 980__ $$ajournal
001017640 980__ $$aVDB
001017640 980__ $$aUNRESTRICTED
001017640 980__ $$aI:(DE-Juel1)IBI-4-20200312
001017640 980__ $$aAPC
001017640 9801_ $$aAPC
001017640 9801_ $$aFullTexts