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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/FZJ-IEK3-VSA The assessment of rooftop photovoltaic potential has become increasingly accurate due to the expanding
/PASSION availability of satellite imagery and improvements in computer vision methods. However, the analysis of
Keywords: satellite imagery is impeded by a lack of transparency, reproducibility, and standardized description of the
Rooftop photovoltaics methods employed. Studies are heterogeneous, target different types of potential with redundant efforts, and
Potential assessment are mostly not open source or use private datasets for training. With respect to the estimation of photovoltaic
Economic assessment potential, this study proposes a conceptual frame of reference for clearly identifying tasks, their relationships,
Computer vision and their data. Additionally, the open-source workflow ETHOS.PASSION is introduced, which integrates the
Deep learning assessment of geographical, technical and economic potentials of regions under consideration along with
Open-source workflow the calculation of surface areas, orientations and slopes of individual rooftop sections. ETHOS.PASSION also

includes the detection of superstructures, i.e., obstacles such as windows or existing photovoltaic installations.
The novel two-look approach combines two deep learning models identifying rooftops and sections, and an
additional model for the identification of superstructures. The three models show a mean Intersection Over
Union between classes of 0.8478, 0.7531 and 0.4927 respectively, and more importantly display consistent
results amongst randomly sampled real world images. The final results are evaluated for multiple datasets and
compared against other studies, with a case study in the Aachen region of Germany being presented.

1. Introduction difficult to scale due to limited data availability. An approach that
has gained popularity in recent years is the use of satellite imagery

Utility-scale solar photovoltaics (PV) and wind projects underpin to estimate the potential. This is not a new research field, but the
the current growth in the use of renewable energy sources, according to improvements in satellite resolution and computer vision algorithms
the annual World Energy Outlook 2022 [1]. Deploying more renewable have made it even more accessible and accurate [5-7]. Nonetheless,
energy technologies also on rooftop areas is highly relevant in the there is still a lack of open projects that provide reproducible results,
context of the current global energy crisis. More self-sufficient living and the need for tools that users of all technical levels can utilize
spaces would reduce the need for centralized suppliers and imports, is apparent. Many studies overlap and have different areas of focus,

and align with Europe’s vision of achieving net-zero carbon emissions.
Achieving net-zero emissions require for rooftop PV to be deployed at
scale, being the source with the least visual impact and land sealing.
In order to tap the great rooftop PV potential in the coming years, it
is necessary to provide model-based estimations of this potential with
a high degree of regional resolution and accuracy. Early approaches
in the literature tackled the potential assessment by extrapolating the
known or calculated data of a smaller region to larger areas [2,3],
sometimes accounting for factors such as population density or cadas-
tral information. Other approaches use high resolution light detection
and ranging (LiDAR) data to perform micro-simulations [4], which is

but it is currently difficult to integrate them and identify the state
of the domain. A focus on creating reusable software that follows
the FAIR (findability, accessibility, interoperability, and reusability)
principles [8,9] is needed for the field to increase in quality.
Depending on the level of detail of the study, four types of potential
can be defined [10-12]. The theoretical potential refers to the total
radiation that is received in a region according to the solar incidence,
without considering any other limitations. The geographical potential
constraints the region of interest to the spatial fraction that is relevant
to the type of study, which in this case would be all suitable building
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rooftops in the region. The technical potential refers to the share of
usable potential after taking into account all technical constraints, such
as the number of panels to be installed or the estimated efficiency
of the system. Finally, the economic potential translates the technical
potential from power into economic terms. For this, one popular metric
is the levelized cost of electricity (LCOE), which measures the aver-
age cost per unit of electricity after taking all associated parameters
into account. While we use these established potential definitions, it
must also be mentioned here that there are other definitions as well.
For example, Bédis et al. [13] divide potential only into resource
potential (comparable to theoretical potential), technical potential and
economic potential. In this case, the technical potential also includes
the geographical constraints.

Studies can also be divided according to the smallest spatial area
to which the data is available. Low resolution studies use regional
aggregated data, such as that of Mainzer et al. [14], which used data
from 11594 German municipalities, Ohtake et al. [15], which used data
from 50 radiance monitoring stations in Japan, or Gutschner et al. [16],
which analyzed the potential of Europe at a country level resolution.
High resolution studies, on the other hand, analyze individual building
information, and are meant to provide a higher level of detail. These
studies can obtain their data from diverse sources, such as three-
dimensional scans [17], cadastere data [13], crowd-sourced data [18]
or satellite data [19].

Studies reported in the literature also vary in the size of the investi-
gated region, ranging from a group of buildings or a small district [20],
to very few country scale articles [14]. Other studies propose an ap-
proach that can be applied to an entire city, such as Sampath et al. [19],
which is comparable to the scope of the present work. Overall, the two
main factors that can influence the potential scope of a study are data
availability and computing resources.

Three different methodology classifications for PV potential as-
sessments can be found in the literature based on different types of
data [21]. Sample methodologies extrapolate the estimation of available
rooftop areas in a small region to a larger one. Multivariate sampling-
based methodologies, while still sample-based, look for proxy variables to
draw a correlation between them and the estimation in order to account
for a portion of the variance. Finally, complete census methodologies
perform their estimations based on specific building characteristics.
Castellanos et al. [22] also define three different levels to differentiate
the methodologies. Low-level approaches assume high data homogeneity
and directly use other variables such as population or building density
to infer rooftop areas. Medium-level approaches combine this statisti-
cal data with geographical information systems (GIS) or LiDAR data
sources. High-level approaches use advanced rooftop detection with high
resolution spatial information, and aim to account for azimuth, slope,
shape and other important characteristics. Finally, Song et al. [17]
differentiated two main PV potential methods: on the one hand, gener-
alized estimations seek to calculate the potential distribution considering
the influence of environmental, economic, social, or other factors.
Detailed modeling approaches, on the other hand, focus on GIS instead,
presenting more accurate but also complex results.

The approaches based on satellite imagery are not novel, and com-
puter vision (CV) has been used for many years. Early approaches
to building extraction, like those of Saeedi and Zwick [23] or Liu
et al. [24], use a set of classic image processing techniques and rules.
In Singh and Banerjee [25], QGIS [26] was used to estimate the total
area in a given georeferenced image. In recent years, deep learning ap-
proaches have risen in popularity: in Song et al. [17], satellite imagery
was combined with digital surface model (DSM) data to estimate the
potential of the Chao Yang District of Beijing, China. Lee et al. [20]
proposed an approach that segments rooftop sections directly, but did
not specify details with regard to their training data. Ma et al. [27]
presented a multi-scale encoder-decoder network to extract buildings,
but did not focus on PV potential assessments. In Phap et al. [28],
the authors evaluated the technical PV potential of Hanoi, Vietnam,
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by combining segmentation and classification methodologies. Krapf
et al. [29] presented the foundations of a segmentation work that was
later further expanded [6]. The latter is an exemplary work, which
is transparent in terms of both data and software. Zhong et al. [30]
used a segmentation approach with interesting concepts with respect
to the pre-processing of satellite images. Other studies, like those of
Chen et al. [7], Jiang et al. [31], and Sun et al. [5], incorporate the
semantic segmentation of satellite images as part of their workflows.

The mentioned articles like Sun et al. [5], Chen et al. [7], Phap
et al. [28], Ma et al. [27] or Sampath et al. [19] all use satellite
images as the data source to identify rooftops, with varying methodolo-
gies. However, there is still a lack of reproducibility and standardized
descriptions in the field with only 17% of papers analyzed by Ren
et al. [32] publishing their code, and most of the articles referring only
vaguely to their labeled data sources. The problem of the standardized
description of methods is relevant due to studies performing different
analyses being constantly compared to each other. The existence of a
common reference framework would ease the comparison of individual
steps and how they influence the calculations.

Model architectures differ very little between studies, and the differ-
entiating points are primarily the quality of the training data, and the
re-usability of the software. In this regard, Krapf et al. [6] contributed a
novel dataset, which they published along with their software project.
The quality of the dataset and its documentation is noteworthy, but
they do not focus on providing their own workflow for technical poten-
tial. The objective of this study is to address the lack of transparency,
reusability and standardized description of methods in the field of
PV potential assessments using satellite imagery. Thereby, the present
paper offers the following contributions:

Standardized description of methods. We define a conceptual
framework that aims to standardize the description of tasks in the
research field along with their relationships to each other and to rel-
evant data contents. It provides an implementation-independent point
of reference that reduces ambiguity in academic information exchange
and increases the comparability of methods, software, and data.

Open software. We provide an open-source workflow that aims
to open this research field to others working in other energy systems
domains. This software, called PhotovoltAic Satellite SegmentatION
(PASSION),! which is part of the Energy Transformation patHway
Optimization Suite (ETHOS), aims to be more robust, easier to use,
and have a wider scope that is actually usable for researchers or users
from other fields. Users can apply the software to any region for which
source data is available. The current state of the project allows for city-
scale estimation, with the potential of becoming even more efficient by
incorporating computing parallelization and inferences.

Two-look approach. We apply a novel two-look approach, with
a common U-Net [33] architecture for all of the models, which is
described in Section 2.2, and separated footprint and sections seg-
mentations achieving mean intersection over union (IoU) of 0.85,
0.75 and 0.49 respectively for the rooftop, section and superstructure
segmentation.

Coherent and documented workflow. Our workflow aims to
be coherent, and the information exchange between steps is well-
documented with well-established standards. For this, we used Geo-
referenced TIFF (GeoTIFF,?) for images and NetCDF [34] datasets for
the rest of the results. All steps, from dataset generation to economic
potential are included in the workflow with appropriate and described
outputs.

This paper is structured as follows. In Section 2, a conceptual
framework is proposed, and the PASSION workflow detailed. Section 3
compares the results of our methodology with open datasets and exist-
ing studies, and uses a German city as a case study for presenting the
model results. Finally, Section 4 summarizes the results and discusses
the potential of the developed approaches.

1 https://github.com/FZJ-IEK3-VSA/PASSION
2 https://www.ogc.org/standards/geotiff accessed 20/01/2023.
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Fig. 1. Overview of different types of rooftop PV potential assessments. Other types of input data are used by different studies, but are heterogeneous and vary depending on the
methodology. The calculation of the geographical potential (essentially the available area, azimuth and tilt) is the main focus of the current and comparable studies. Whether it is
by inferring, analyzing the 3D data or analyzing satellite imagery, all methodologies should take into account the distribution of sections, azimuths, tilts, existing superstructures,
shadowing and the final panel area, but a specific implementation may not account for one or more steps. The purpose of the framework is to be a general model capturing the

nature and characteristics of the problem.

2. Methodology

In this section the open source workflow PASSION is presented. In
order to describe its individual computational steps with their depen-
dencies as well as required and resulting data sets in detail, the task of
photovoltaic potential estimation is first considered at an abstract level.
The conceptual framework shown in Fig. 1 formalizes the individual
sub-tasks that must typically be accomplished. The implementation-
independent description is intended to standardize the general under-
standing of the subject and serve as a basis for the identifiability and
comparability of methods and software implementation scopes. In our
case there is some flexibility in the order of steps, as it is not as easy
to abstract the order as it is the tasks. Different potentials are usually
described from broad to narrow, but computationally it is typically
more efficient to only calculate the theoretical potential for the region
of interest, calculated as the geographical potential. When using such
conceptual frameworks, it is important for authors to map each specific
step in their implementation with the corresponding reference step.

Methodologies and software packages, which can vary widely across
multiple aspects such as the kind of data used, the spatial resolu-
tion of the final results or the integration of different steps, can be
mapped against the proposed framework, which allows complex work-
flows to be broken down and individual sub-processes to be matched
and contrasted. The implemented methodology of the developed PAS-
SION workflow is depicted in Fig. 2 and is related to the conceptual
framework in the text.

2.1. Data sources

A key principle of the workflow design was data availability and
transparency. The approach should be generalizable to other regions
of the world, although its performance may vary due to the differences
with the training data set. Furthermore, equivalent data sources can be
fed into any step of the system, as long as their format remain the same.
In the following, we provide an explanation of the data sources used:

Regional shapefiles. In order to retrieve accurate representations
of the target administrative boundaries, a small utility was integrated
using Nominatim,®> which automatically generates a shapefile based
on a natural language description of a region. The alternative way of
specifying a region of interest is adding the target-bounding box in
latitudinale and longitudinale coordinates to the configuration (config)
file. This initial information is used as part of the satellite imagery step
of our workflow, as portrayed in Fig. 2.

Satellite imagery. High-resolution satellite input data allows not
only better rooftop identification, but also a more detailed analysis at
the rooftop level. It is important to note that the ground resolution
of the satellite imagery should match that of the training data for
the segmentation models. Some available satellite sources sorted by
augmenting resolution are Landsat8,*,° Sentinel-2, Gaofen,® IKONOS,”
QuickBird-2,® GeoEye-1,” and Worldview-3.!° As a developer, it can
be convenient to use a provider that integrates multiple data sources,
such as Google Maps,'! or Bing Maps.'?> However, one drawback of this
choice is not having additional information about the images, such as

3 https://nominatim.org/, accessed 20/01/2023.

4 https://docs.sentinel-hub.com/api/latest/data/landsat-8/, accessed
24/01/2023.
5 https://www.usgs.gov/landsat-missions/landsat-data-access accessed

24/01/2023.
6 https://www.cnsa.gov.cn/n6758823,/n6758838/c6808018/content.html,
accessed 16/09/2023
7 https://catalog.data.gov/dataset/ikonos-2, accessed 24,/01/2023.
8 https://earth.esa.int/eogateway/catalog/quickbird-full-archive, accessed
24/01/2023.
9 https://earth.esa.int/eogateway/catalog/geoeye-1-full-archive-and-
tasking, accessed 24/01/2023.
10 https://earth.esa.int/eogateway/catalog/worldview-3-full-archive-and-
tasking accessed 24/01/2023.
11 https://developers.google.com/maps accessed 20/01/2023.
12 https://www.bingmapsportal.com/, accessed 20/01/2023.
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Fig. 2. Modular workflow of the PhotovoltAic Satellite SegmentatlON (PASSION). Every step can be redefined, including the data, if the interface described in the source code
documentation is retained. Input data (segmentation datasets, satellite imagery, tilt distribution and weather datasets) must follow the documented format, but can otherwise come
from any source. Parameters such as the minimum section area, panel properties, or a polygon simplification factor can be specified by a configuration file. For the RESKit [35]
simulation, the open source workflow uses the MERRA-2 [36] dataset. If the appropriate version is available, SARAH [37] and ERAS5 [38] datasets can also be used.

the date or satellite’s position. Both Google and Bing Maps use zoom
levels to define the ground resolution with an integer starting from
0 that defines the map resolution M, depending on the latitude (lat)
according to the following formula:

_156,543.04 m/pixel * cos(lat)

M, = 1
r (zzoom) ( )

where:
zoom = Satellite zoom level, integer larger than 0.

Images can be requested at any zoom level, but the data availability
is reduced for higher resolutions. Although there is no official data
for global coverage per zoom level, urban areas have always been
found to be available up to a zoom level of 19, or a theoretical ground
resolution of 30 cm/pixel. This theoretical ground resolution is exact at
the equator and tends to have an even higher resolution in other parts
of the world. These images constitute the satellite imagery input of our
workflow, as described in Fig. 2.

Labeled rooftop sections. Multiple approaches can be utilized for
labeled rooftop sections. An initial approach consisted of detecting only
rooftop footprints, for which a combination of AIRS (Aerial Imagery
for Roof Segmentation), [39] INRIA, [40] and cleaned 3D data from
the German federal state of North Rhine-Westphalia (NRW) [41] were
used. The datasets vary in resolution, and were modified to meet a
30 cm/pixel ground resolution. A second methodology adapted Krapf

et al.’s [6] dataset, where instead of a binary segmentation the different
rooftop sections were annotated into 17 discrete orientation classes,
one of these being flat rooftops. The dataset resolution was found to
be similar to a zoom level of 20, or approximately 15 cm/pixel. How-
ever, we found that both data availability and computing performance
would suffer for larger regions when using this resolution. Therefore,
the dataset was augmented to account for both 15 cm/pixel and 30
cm/pixel. Both approaches are combined in the final methodology, in
which a two-look approach is proposed (see Section 2.2), training two
separate models on the INRIA and RID datasets. These datasets are
termed the rooftop segmentation dataset and section segmentation dataset
inputs of our workflow, as described in Fig. 2.

Labeled panels/superstructures. Our initial approach attempted
to detect any superstructure using classical image processing methods.
This proved not to be very general, as they could be tuned with
acceptable performance for a set of data but fail when presented with
new data. Therefore, we decided to use the dataset proposed by Krapf
et al. [6], which labels eight different superstructure classes, most inter-
estingly including photovoltaic panels. Table 1 compares the existing
segmentation datasets for rooftops, sections and superstructures. This
dataset is termed the superstructure segmentation dataset input of our
workflow described in Fig. 2.

Crowdsourced data. Different stages of the workflow benefit from
using geographic crowdsourced data [42]. Municipal administrative



R. Pueblas et al.

Table 1
An overview of relevant segmentation datasets. During the development of this study,
the AIRS dataset was taken down online, but the validation metrics have been preserved.

Dataset Resolution Labeled classes

INRIA [40]

Region

US and Austria 30 cm/pixel 0: background

1: rooftop

RID [6] sections Wartenberg 15 cm/pixel 0-15: rooftop
orientation in
22.5° intervals
16: flat rooftop

17: background

RID [6]
superstructures

Wartenberg 15 cm/pixel 0: background
1: photovoltaic
installation
2-8: other

superstructures

AIRS [39] Christchurch 7.5 cm/pixel 0: background

: rooftop

1
NRW [41] Aachen Vector data 0: background
1

: rooftop

boundaries can be extracted, the location of some existing panels found,
and the open building footprints used instead of, or in addition to
satellite analyses. For this, OpenStreetMap [43] (OSM) was used via the
Overpass Turbo,'® API. However, it is important to note that the quality
of the annotations highly depends on the geographic region [44], and
there is a lack of standardized descriptions for certain attributes, and
so this data should be accounted for as partial and not exhaustive. This
data can optionally be used in exchange for the rooftop segmentation
dataset input of our workflow described in Fig. 2.

Weather data. In order to calculate the technical potential, both
weather and solar radiance must be accounted for. For this, either the
SARAH solar radiation [37] and ERA5 climate datasets [38] or the
MERRA-2 [36] dataset can be used. These datasets are represented as
the SARAH dataset, ERA5 dataset and MERRA-2 dataset inputs in our
workflow described in Fig. 2, and either method can be used. While the
used RESKit model applies these data sources, further satellite-derived
irradiance databases could improve the workflow [45].

Tilt distribution. In order to account for the tilt angles, and due
to the difficulty of detecting this with images, public manually labeled
data from the NRW region [41] was used to estimate future predictions.
This distribution is termed the tilt distribution input in our workflow, as
depicted in Fig. 2.

2.2. Geographical potential

The focus of our study lies on the assessment of geographical rooftop
PV potentials. For this, satellite images must be automatically analyzed
in order to estimate areas that are suitable for panel placement, taking
multiple factors into account, such as the azimuth, tilt angle, or roof
obstacles. The main difference of our method compared to others is that
we propose a two-look approach for detecting sections. This means that
one model is trained on the task of rooftop segmentation exclusively,
where more data is available, and a second is trained on the task of
section segmentation. The reason for this is that we found the second
model to be less robust on its own which led to a large percentage of
false positives, and overestimations of the area of regions that deviate
significantly from the training data. In the following, we explain the
various steps of our workflow (Fig. 2).

Rooftop segmentation. The rooftop segmentation step corresponds
to the raw area extraction in our generic workflow shown in Fig. 1. In
this step, a first segmentation model performs a binary classification,
where input satellite tiles of 512 x 512 pixels are predicted. This

13 overpass-turbo.eu accessed 17/01/2023.
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Fig. 3. The current GUI allows the user to select the different estimated layers and a
set of basemaps. In this case, the OSM [43] basemap is used. In the URL parameters,
the user can specify which results to load, which variables to show and how many
polygons to render.

resolution allows the models to have more context while being rea-
sonably small for our computational needs. A classical U-Net network
was implemented for this task. This model follows an encoder-decoder
network architecture, where the input images are first encoded multiple
times, and so shrunken in size. This enables the network to learn an
abstract representation of the image and to extract its fundamental
features. In the same manner, this representation is decoded back to
the original size, with bridged information from each encoding step,
finally recreating a segmented representation of the original image that
can be binary or have multiple classes. Different networks can also be
used as encoders. In our case, a ResNet [46], which is a Convolutional
Neural Network made out of residual blocks, is used as the backbone.
The output of this stage is a list of tiles that are filtered using the
predicted binary output. In some cases, tile borders can be conflicting,
given that they lack spatial context. For this, a window slide stride was
implemented, in which each tile is separated by 256 pixels and multiple
predictions are carried out for these pixels at the borders. This model
was trained on the INRIA dataset, which is augmented by randomly
rotating and applying smoothing with Gaussian filters, as well as color
transformations. This step could also be substituted by OSM building
footprints as a baseline, but as this depends on crowdsourced data the
reliability varies across regions [44].

Section segmentation. This step encapsulates both the section ex-
traction and the azimuth extraction in Fig. 1. The same U-Net archi-
tecture as for the rooftop segmentation is used. In this instance, the
model is trained on multi-class segmentation with 18 output classes:
16 azimuth classes, flat rooftops, and the background class, which
encapsulates everything that the model is not trying to classify. The
512 x 512 satellite tiles are sent to this model, which segments the
different rooftop sections with the predicted orientation angle. In order
to reduce the number of false positives in this step, which has shown to
be less robust for regions far from the training area, the portions of the
segments that do not overlap with the rooftop segmentation are filtered
out of the prediction. In addition, in order to reduce the number of
false negatives, the rooftop segment predictions that were not estimated
by the section segmentation are also included in the final estimation.
We compare the evaluation of both approaches in Section 3.1.1, but
this does not coincide with the performance in non-controlled real
life regions. This two-look approach has been found to provide much
more robust results in the wild, which refers to uncontrolled real-world
imagery, than directly predicting sections, as explained in Section 3.1.2
and Fig. 6, and also than detecting the section using classical image
processing techniques.
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Fig. 4. Snakemake steps of PASSION. Each step is a rule defined in the Snakefile. This tool offers multiple advantages for building coherent workflows, and will only run rules
that are needed to regenerate. For example, once the models are trained, Snakemake would skip them for any further analyses unless specified otherwise.

Tilt estimation. The vertical angle of the solar panel is crucial for its
efficiency, and is estimated in the tilt extraction step in Fig. 1. Optimal
tilts vary depending on the latitude, and are usually between 30 and
45°. It is challenging to accurately estimate this using computer vision
techniques, especially considering that satellite images have relatively
low resolutions and are captured pointing vertically down to the Earth.
For this reason, the current approach uses a kernel density estimator
(KDE) to estimate the probability density function of a ground truth
set. For any new estimated sections, a new random tilt value is taken
from the predicted density function. One factor to take into account
is that this is data from the NRW region only, which probably has
biases corresponding to the region. For sections estimated to be flat the
panel can be installed with optimal tilt and azimuth, and so the value
is set to 31°. Note that the optimal value depends on the latitude of the
region, and so the method for optimally-assigning the best values can
be implemented in the future.

Superstructure segmentation. This step relates to the existing panel
extraction and existing obstacle extraction steps in Fig. 1. Another U-
Net is trained on the RID dataset in order to segment different types
of superstructures. Similarly to the section segmentation, the initial
rooftop segmentation is used to filter out obstacles that are incorrectly
located next to the predicted buildings, such as in the road. For the
purposes of this study, the nine output classes are grouped in existing
panels, obstacles, and background. This encapsulates the two steps,
existing panel extraction and existing obstacle extraction of the generic
workflow in Fig. 1.

Shadowing. The shadow estimation step of the generic workflow
is important for potential assessments and represents the decrease in
performance due to obstacles or other buildings creating a shadow in
the potential installation. In PASSION, shadowing is accounted for with
a reduction factor that can be specified by the user.

Rooftop vectorization. Image masks are one way of representing
the predicted rooftops, but we need the georeferenced polygon repre-
sentation for further analyses. For this, all images are first stored in
a GeoTIFF format, allowing for the inclusion of metadata such as the
coordinate reference system. With this information, the predicted build-
ings are converted from images to vectors, which is performed using
an algorithm presented by Suzuki and Be [47], which is implemented
in OpenCV [48]. This method follows the borders of holes in a binary
image in order to identify them. This is an intermediate processing step,
and part of the section extraction.

Polygon simplification. In order to simplify the predictions into
polygons that take less storage, the Teh Chin chain approximation
algorithm [49] and Ramer-Douglas-Peucker algorithm, which was first
proposed in [50], are used. This would be an intermediate processing
step, and part of the section extraction.

Area extraction and size filtering. Once these steps have been
performed, the area is calculated taking into account the ground pixel
resolution with respect to the latitude. Rooftops detected below a user-
defined area threshold are discarded due to not being able to fit an

installation. This would be an intermediate processing step, and part of
the section extraction.

Panel layout. Finally, an algorithm for panel layout placing was
implemented. This algorithm requires the following parameters, which
must be in the same coordinate system: a target polygon, the polygon
orientation, the shape of the panels, a spacing factor, a minimum
distance to the border and a number of offsets. The target polygon
and its orientation represent the predicted building where we will place
panels, and the rest of the parameters are defined by the user as part of
the configuration file. First, the algorithm shrinks the original polygon
according to the user-defined minimum distance to the border. Then,
a grid oriented according to the azimuth is created, with each cell’s
shape being the panel shape multiplied by the spacing factor, separating
the panels by a typically small distance. A panel is placed in every
cell that does not intersect with the shrunk original polygon, and this
process is repeated by offsetting the grid »n times by n/width units,
and is repeated for vertical and horizontal panel placing. Finally, the
placing that fits most panels is selected. The resulting data contains
the geographical information (location, area, azimuth and tilt) of every
estimated potential panel.

2.3. Technical and economic potential

To estimate the technical potential, the geographical information
from Section 2.2, corresponding to usable area in Fig. 1, is transformed
into energy units, with an hourly spatial resolution during an entire
year. For this simulation, the open source Renewable Energy Simula-
tion toolkit for Python (RESKit) [35] is applied, which is built up on
PVLib [51]. Both theoretical potential and technical potential are calcu-
lated in this step. This library takes all of the mentioned information
in the shape of a Python Xarray [52] and uses either the SARAH solar
radiation and ERAS climate datasets or the MERRA-2 dataset for the
calculations. The data is aggregated per panel to show the total yearly
generation in watt-hours. For these estimations, PVLib offers a number
of predefined panel models. All of the parameters for each step are
configurable by the user.

Finally, after considering all of the costs and benefits, the average
cost per kilowatt-hour can be calculated during the lifespan of the
system in order to obtain the economic potential. For this, the LCOE [53]
is used:
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where:

n = expected lifespan of the system.
I, = capital costs in the year 7.
M, = maintenance costs in the year z.
E, = electrical energy generated in the year ¢.
r = discount rate, which compares future costs

to present value based on market interest rates.

The final result of the simulation is an economic potential es-
timation, giving an average cost per kWh with a spatial resolution
per rooftop section. This allows for many different analyses, such as
setting a cost threshold per kWh to separate viable from nonviable
installations, or estimating what would be the expected potential with
a given investment for a region. All of this is stored as a NetCDF file
with a time resolution of 30 min over a year, and a spatial resolution
per estimated section.

2.4. Visualization and workflow management

In order to visualize the results, a preliminary graphical user in-
terface (GUI) was implemented using the Python libraries Flask [54]
and Folium [55]. This web interface renders the original georeferenced
images on top of an OSM basemap, as well as the vectorized polygons
of each step separately. Fig. 3 shows an excerpt from the interface, in
which the different layers with additional information per step can be
selected.

Implementing such a modular workflow like PASSION presents in-
teresting challenges, such as keeping the file consistency between steps,
easily tracing errors or selecting which steps to execute. Implementing
a complex manager would be prone to inconsistencies and less scalable,
so it was decided to use the Snakemake [56] workflow tool. This
makes it easier to create reproducible and scalable analyses, allows
for the execution of jobs in cluster environments, and orchestrates the
workflows in a single human-readable file called a Snakefile. A config
file can also be natively defined, allowing easier parameterization of the
software. Snakemake offers multiple advantages for building coherent
workflows, and will only run rules that are needed to regenerate. For
example, once the models are trained, Snakemake would skip them for
any further analyses unless otherwise specified. The current workflow
described as Snakemake rules is shown in Fig. 4.

3. Results and discussion

This section discusses the results obtained in our experiments. In
Section 3.1 the rooftop, section and superstructure segmentation mod-
els are validated across the available datasets. Section 3.2 compares the
results of our approach to others found in the literature. Section 3.3
outlines a case study for the region of Aachen, Germany. Finally, Sec-
tion 3.4 describes the known limitations of our approach. We validate
our results for all potentials for which standard measurements are
available.

3.1. Image segmentation

As part of the geographical potential, in this section the different
image analysis models are evaluated against datasets external to the
training data. Section 3.1.1 outlines the process used to select and
train our segmentation model. In Section 3.1.2, the three models are
evaluated against all available datasets for each task. Finally, Sec-
tion 3.1.3 compares the results with gradual changes of the image
ground resolution, showing how the performance changes for higher
and lower resolution input images.
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3.1.1. Model selection

All three segmentation tasks for rooftops, sections and superstruc-
tures (Fig. 2) used the same U-Net architecture with a ResNet backbone.
These tasks correspond to the training box in the workflow diagram in
Fig. 2. As part of the training, we must use an algorithm that minimizes
the error function. This is called the optimizer, and Adam [57] with
a learning rate of 107> reported the best performance. For rooftop
segmentation we used a batch size of 8 over 10 epochs, which means
that it was iterated 10 times during training in groups of 8 images. For
the section and superstructure segmentation models, 20 epochs were
used. The number of output classes were specified as two, 18, and nine
for rooftops, sections and superstructures respectively. Both the INRIA
dataset for the rooftop segmentation and the RID dataset for the section
and superstructure segmentations, were split into 80%, 10% and 10%
for training, validation and test sets. Finally, all models were tested
with and without data augmentation, which in this case incorporated
classical computer vision transformations such as rotations in multiples
of 90°, Gaussian filters, which are used for image smoothing, or slight
zooms. In the case of the RID dataset, the data has a ground resolution
of 15 cm/pixel, which corresponds to a zoom level of 20, and is
double our target theoretical resolution of 30 cm/pixel. The dataset
was resized into our target resolution, and different combinations of the
data resolutions were tried. For evaluation, the IoU, [58] also known
as the Jaccard Index [59], was used. This is a common evaluation
metric for image segmentation in computer vision, as it measures the
percentage of overlap between the target mask and the prediction
output, considering the rate of false negatives and false positives. For
multi-class segmentation, the mean IoU is used, which averages the
individual IoUs for all classes.

Fig. 5 shows how the IoU and multi-class focal loss [58], which
is a function that evaluates the performance of the model during
training, evolve during training for the different models, demonstrating
that the performance generally improves by using data augmentation
techniques, especially for small datasets. Given its large size, and the
fact that the epochs were not interrupted after a number of steps, the
INRIA dataset started to perform well already after the first epoch.
After the first few epochs there is negligible performance increase and
it could be argued that the model slowly started to overfit. The other
two models seemed to start approaching a plateau after 10 epochs.

3.1.2. Model validation

After training, all best performing models were evaluated using all
available data for the same task. For rooftop segmentation, multiple
sources exist and a proper assessment and comparison can be carried
out. Unfortunately, this is not the case for models for section and
superstructure segmentation, where the only assessment possible is to
validate in the separated test set of the original RID dataset. Table 2
shows the performance of the different models against all the collected
test datasets. In our abstract framework of Fig. 1, the evaluated tasks
correspond to raw area extraction for the rooftop segmentation, section
extraction for the section segmentation and both existing panel extraction
and existing obstacle extraction for the superstructure segmentation.

Prediction samples for the datasets used in Table 2 can be found in
Fig. 7 for rooftops, Fig. 8 for sections and Fig. 9 for superstructures. The
rooftop segmentation model performs best in a wider range of datasets.
On the other hand, the section and superstructure segmentation models
can only be compared against the ground truths of the RID test set and
their performance is restricted to the geographical location. This visual
evaluation is also important for assessing whether the estimations are
coherent, and to better understand where the models are more likely
to underperform. In the case of the NRW dataset, performance was
lower than for the other rooftop datasets, with a rooftop IoU of around
0.5490. After inspecting the visual results, we discovered that the NRW
labeled data is not perfect itself, featuring some false negatives and
overly simplified footprints, which explains these results. Overall, these
results are similar to those seen in state-of-the-art research. However,
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Fig. 5. IoU and loss metrics of the models during training. Rooftop training in 5(a) and 5(b) learned the fastest and benefitted the least from augmenting the images, as the raw
data (INRIA) is already large. It can be seen that after the first few epochs the model does not significantly improve and starts to overfit. Section and superstructure training

from 5(c) to 5(f) significantly improve after augmenting the data (RID).

the lack of standard benchmarks in the field makes it difficult to
formally compare our results with those of other studies. Most impor-
tantly, performance is very tied to geographical location in many cases,
and real life results for a new region may vary even further.

The proposed two-look approach was also tested again with the
RID test set. This, however, provided worse results with a section
segmentation mean IoU of 0.64. Even though the results indicate that
the one-look approach provides a better score in the test set, the two-
look one outperforms it in the wild. This is because the RID dataset

is small, and even after augmentation it fails to generalize well to
other regions. With the two-look approach, rooftops are first correctly
identified with a more general model, and these results are then used
to filter out false positives from the section segmentation. A visual
comparison of some results for the RID set can be seen in Fig. 6.

3.1.3. Multi-resolution evaluation
The availability of a very high resolution dataset makes it possible
to test how our models perform across different ground resolutions
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Fig. 6. In this figure, three samples from the RID [6] dataset are selected to compare the one-look and two-look approaches. The columns show, in order: the original image
from Google Maps, the rooftop segmentation binary prediction, the section segmentation prediction, and the combination of the two. The results of the two-look approach in
the wild have shown more coherent performance. Images in the left column correspond to samples from the RID dataset. In the second column, pixels in yellow represent a
predicted rooftop. In the rest of the columns the background class is shown in yellow, and each color represents an orientation predicted by the section segmentation model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2

Overview of the performance of the segmentation models against all collected test
datasets. The rooftop segmentation model performs best, both because of the larger
training dataset and the higher complexity of the other tasks. For the section
segmentation, the mean deviation metric is calculated by taking the mean orientation
error of the true positively classified section pixels. The results of the superstructure
segmentation model are satisfactory for the panel class, but the remaining obstacles,
such as dormers or ladders, are more challenging to detect.

Rooftop dataset Background IoU Rooftop IoU Mean IoU
INRIA 0.9364 0.7592 0.8478
RID 0.8789 0.6446 0.7618
AIRS 0.9777 0.7553 0.8665
NRW 0.8742 0.5490 0.7116
Section dataset Flat ToU Tilted IoU Mean IoU Mean deviation
RID 0.7718 0.7386 0.7531 16.20°
Superstructure dataset PV panels IoU Rest of obstacles IoU Mean IoU
RID 0.8164 0.3767 0.4927

on the raw area extraction task of Fig. 1. We tested the AIRS dataset,
which has a ground resolution of 7.5 cm/pixel, on different resized
resolutions. Fig. 10 shows how the original model, trained with images
of ground resolutions of between 20 and 30 cm/pixel, performs best
around those. It is interesting to note that the model does not perform
as poorly on images with higher resolutions compared to the trained
data, as on images with lower resolution. In summary, the intended
ground resolution that will provide the optimal results is 15 cm/pixel,
but slightly lower or slightly higher resolutions will also obtain results
with a close performance. In general, images with a resolution higher
than 15 cm/pixel will function better than those with a lower one.

3.2. Comparison with other studies

For estimating the technical potential, which corresponds to total
generation in our conceptual workflow, we perform micro-simulations
for every predicted panel, enabling comparisons with other studies that
do this with different methodologies. LiDAR analyses are generally
more accurate than satellite ones, and can be a good indicator of
whether or not the obtained results make sense. The chosen panel for
our experiments was the LG Electronics LG370Q1C-A5, with a capacity
of 370 W and surface area of 1.7 x 1.016 m2, but any of the models
offered by PVLib can be used. Regarding the economic parameters,
we use a system expected lifespan of 25 years, a price per panel of
350 € for the LG370Q1C-A5, a maintenance cost of 1% of the initial
investment per year, a yearly degradation of 0.5% per year, and a
discount rate of 8%. Additionally, other installation costs such as the
inverter are taken into account for the investment cost. The inverter
price is defined as a ratio per installation capacity, in our case 0.2 €/W
and with a lifespan of 13 years. Other initial costs are also defined, and
in our case were set to 200 € per installation.

In Adjiski et al. [60], the technical rooftop PV potential is ana-
lyzed for a district of Skopje, North Macedonia. The study performs
an assessment with a one meter resolution LiDAR point cloud, with
which roof planes are identified and their potential simulated, taking
their area, slope, morphology and shade into account. Although the
article does not provide the exact coordinates of the study area, it
provides a footprints image that allows it to be found manually as a
region between latitudes 42°0’9", 42°0'25" and longitudes 21°22'30",
21°231"”. Fig. 11 shows the results for the study region obtained with
PASSION. A detailed comparison is presented in Table 3, where the
results from Adjiski et al. are compared to ours. Before filtering any
rooftops, the panel area in each of the buildings totaled 228, 243 and
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Fig. 7. Sample predictions of the rooftop segmentation model, with predicted rooftops represented in yellow. The columns show the original image, the ground truth, and the
prediction, in sequence. Images in the left column show from top to bottom samples from the INRIA [40], RID [6], AIRS [39] and NRW [41] datasets respectively. The ground
truth source of the NRW dataset is manually labeled, and therefore it is roughly simplified and imperfect. Our model detects smaller buildings that were not present in the original
data. The source of the satellite imagery is Google Maps and Bing Maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

233 m? respectively, but after applying the same filtering criteria that
Adjiski et al. use, these results were reduced to 110, 108 and 233 m?
respectively. This makes a total of 452.5 m?, which is close to their
result of 512.1 m?, especially taking into account that parameters such
as the spacing between panels, spacing from the border and the type
of panel can influence the final result. Unfortunately, these parameters
are not specified in the original paper.

Another example is the study by Kausika et al. [61], which analyses
the entire municipality of Apeldoorn, in the Netherlands. Again, a
LiDAR point cloud was used as the source data to derive a digital eleva-
tion model (DEM), and estimate the technical potential of the different
rooftop sections. For the comparison with PASSION, we retrieved the
shapefile of the region from OSM, and conducted a full-scale analysis.
Fig. 12 shows the prediction results for the sample district used in the
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original paper obtained with PASSION. The results of the approach
yield a yearly technical potential of 283.9 GWh. For this, rooftops are
classified as unsuitable, partially suitable and optimally suitable areas,
based on a south-facing orientation, a slope less than or equal to 38
degrees, and solar irradiation greater than 70% of the maximum annual
radiation of the area. After applying these filters, our results exceeded
these predictions at a yearly technical potential of 356.2 GWh (+ 25%).
This was due to the prediction of unusually large rooftop areas in a
few cases. After removing rooftop outliers that are larger than three
times the standard deviation of the municipality, which account for 419
sections out of the original 27,600, the obtained prediction is 258.8
GWh (-9%), which is closer to the results of the compared paper.
This demonstrates that our current models are prone to overestimating
the rooftop area under certain circumstances. In addition, our panel
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Fig. 8. Sample predictions of the section segmentation model. The columns display the original image, the ground truth, and the prediction, in sequence. The predictions show
three sample images from the RID [6] dataset. The background class is shown in yellow, with each color representing an orientation predicted by the section segmentation model.
The source of the satellite imagery is Google Maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Results comparison between Adjiski et al. [60] and PASSION. In order to use the same criteria for the comparison, both the whole results
(before filtering), and only the sections detected to be south-facing (after filtering), are shown. After filtering, the results shown are quite similar

to those from the study.

Approach Roof ID Roof area (m?) Number of panels Panel area (m?) Yearly output
(MWh)
1 227 78 128.7 25.3
. 2 241 82 135.3 26.9
Adjiski et al. [60] 4 497 154 254.1 50.5
Total 965 314 518.1 102.7
1 788 132 228.0 49.0
PASSION (before 2 750 141 243.5 48.9
filtering) 3 590 135 233.2 65.2
Total 2128 408 704.7 163.0
1 326 64 110.5 30.1
PASSION (after 2 278 63 108.8 29.2
filtering) 3 590 135 233.2 65.2
Total 1195 262 452.5 124.5

detector estimated an existing yearly production of only 0.23 MW,
installed compared to 3.4 MW, in Kausika et al. [61]. As our focus lay
on the workflow definition and geographical potential, this portion of
our work is probably not yet mature and must be improved upon in
future studies.

Finally, we compared the results with Mainzer et al. [18], who
analyze the German municipality of Freiburg. In this study, OSM data
is used in order to extract the geographical potential, and the data
is not filtered by orientation or other factors. Their methodology also
analyzed the extracted buildings in order to detect ridge lines to divide
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the rooftops into different sections. Tilted rooftops where assigned an
angle from a normal distribution function with a mean value of 37°.
Furthermore, the panel modules are placed using an algorithm that
is not described in detail. The study also calculates the technical and
economic potential. For the entire municipality of Freiburg, the final
yearly technical potential is found to be 524 GWh, and the LCOE
ranged from 90 to 290 €/MWh. In our initial analyses, we obtained
a very different estimation, at 161 GWh for the whole municipality.
After configuring PASSION to use OSM data like in Mainzer et al. [18],
an underestimating result of 230 GWh was still obtained. This could
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Fig. 9. Sample predictions of the superstructure segmentation model. The columns show the original image, the ground truth, and the prediction, in sequence. The predictions
display three sample images from the RID [6] dataset. The background class is shown in yellow, and each different color represents a different class predicted by the superstructure
segmentation model. The source of the satellite imagery is Google Maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 10. The diagram shows the IoU of the rooftop segmentation model on the AIRS dataset for different ground resolutions. Test images were resized from their initial 7.5 cm/pixel
resolution. Peak performance is seen at values of 20 to 30 cm/pixel, which is the resolution of the training dataset. Performance at higher resolution (i.e., 7.5 to 10 cm/pixel)
is still reasonable and comparable to values at a 50 cm/pixel resolution, but once the resolution starts to decrease too greatly, at around 75 cm/pixel, the model’s performance
declines.
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Fig. 11. District of Skopje, North Macedonia analyzed in Adjiski et al. [60]. The GUI
visualizes the final sections in blue, with the sections filtered by size in red and
panels in green. The buildings used for the final analysis are zoomed on the right.
The background map corresponds to Bing Maps imagery. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 12. A picture of the district in Apeldoorn, the Netherlands that was used in the
figures of Kausika et al. [61], and the results of PASSION. Sections that were filtered
due to their size are shown in red, and those that were used in the study appear in
blue. The background map correspond to Bing Maps imagery. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

be explained due to a smaller panel separation. Mainzer et al. [18]
propose a separation of 10 cm for slanted roofs, and a separation of
twice the modules’ height for flat roofs, where panels are installed at
a 30° angle. In our initial configuration, we used a panel separation
of 30% of the panel size, and a space to the border of the section of
1.5 m. After adjusting our parameters to a panel separation of 10%
and a border spacing of 0.70 m, results became much more similar
to Mainzer et al. [18]. Using the segmentation models approach we
obtained a yearly technical potential of 392 GWh, and using the OSM
approach we obtained a result of 557 GWh per year. Regarding our
LCOE calculations, our results ranged from 58 to 249 €/MWh, which
can again be explained by varying LCOE parameters.

3.3. Case study

In order to showcase the PASSION workflow, we applied it to
the region of Aachen, situated in the west of the German federal
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state of North Rhine-Westphalia. This region, with a surface area
160.8 km? [62], serves as a sample of a larger municipality including
its non-urban surroundings. Fig. 13 shows the administrative bound-
aries that were retrieved for the study. Fig. 14 depicts a sample of
the detected rooftops, potential-placed panels, and existing panels in
zoomed-in areas of the city center.

The techno-economic results were calculated for the entire region.
First, the models predict all available sections, and the post-processing
of the estimations allows for further inspection of the data. The total
annual technical potential of the region was calculated to be 746.5 GWh
with an installed capacity of 806.62 MW,. After removing north-facing
sections and area outliers that are more than three standard deviations
from the mean, this decreases to 537.0 GWh, with an installed capacity
of 578.0 MW,,. According to [63], the yearly electricity consumption
in the Aachen city region was around 2930 GWh in 2018, meaning
that our potential calculations would cover about 27.5%, or 19.7%
(after filtering), respectively. The mean LCOE for the unfiltered data
was 72.7 €/MWh, and 69.3 €/MWh (after filtering). Fig. 15 shows
the distribution of potentials per rooftop section and the cost potential
curve (CPC) of all the sections sorted by LCOE. Post processing enables
some interesting additional data calculations, such as the allocation of
a fixed budget, with which the most efficient panels can be installed
using a simple greedy algorithm. In this case, an initial investment of
one million € would allow a total capacity of 1.1 MW to be installed,
with a yearly potential of 1.0 GWh and mean LCOE of 63.4 €/MWh.

3.4. Limitations

There is a set of limitations to the current state of the project. First,
and perhaps most importantly, the model results in the wild are in
some cases not very accurate. Results are expected to be more accurate
in larger regions, where errors in specific buildings are balanced out.
Performance varies across regions due to the nature of the training data.
In the future, building more heterogeneous quality datasets may help
improve the performance. Oftentimes, the rooftop segmentation model
overestimates large areas by merging a group of buildings together.
One workaround to limit this is to filter the buildings that are, for
example, three standard deviations away from the mean, removing
exceptionally large predictions, as shown in Section 3.2. Ultimately this
should be targeted by either improving the performance of the model
or developing an algorithm to separate these buildings. In terms of
scalability, the technical potential simulation currently limits the scope
of the analyses, which otherwise would be worldwide, as the SARAH
dataset does not have global coverage. On the topic of superstructure
detection, although the results in the test set are promising, existing
panels are currently not detected in most cases for random samples in
other regions. Two approaches can increase performance in the future:
First, training the superstructure model with more labeled data; second,
including crowdsourced panel locations in the analysis. However, we
believe that the models are starting to perform well enough for cer-
tain applications in the energy system domain, where estimations for
rooftop PV potential do not yet exist.

4. Summary and conclusions

With satellite availability and computer vision methods developing
in recent years, the topic of rooftop photovoltaic potential estimation
has the possibility of competing in accuracy with higher quality non
scalable approaches like 3D analysis. For this, it is paramount that
the research community has access to clearly documented datasets and
software and that computational workflows and their results become
transparent and reproducible. Existing workflows and approaches have
not been found to be sufficiently reproducible, and this is one of the
aspects where we aim to contribute.

We presented a conceptual framework for the standardized descrip-
tion of tasks and processes relating to photovoltaic potential estimation.
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Fig. 13. On the left, the Aachen region administrative boundaries are shown. On the right, the retrieved satellite imagery from Bing Maps is shown.

Pdiction

Sections

Superstructures

Fig. 14. PASSION sample results for specific parts of the case study of Aachen. The
images in the left column represent the base map before the prediction. The first image
in the right column shows predicted sections in blue and filtered sections in red. The
second image shows predicted PV panels in green. The third shows superstructure
predictions in brown, and predicted existing panels in yellow. The background map
correspond to Bing Maps imagery. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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It aims to serve as a common generic reference with which ambiguity in
academic information exchange can be reduced. It was utilized in this
study to increase the transparency and comparability of the presented
work.

Thereafter, we introduced the open-source workflow ETHOS.
PASSION,'* our approach to combining different deep learning models,
thus proposing an open workflow with state-of-the-art performance.
A comparison with other studies using LiDAR and crowdsourced data
was carried out, with the results showing that the performance was
comparable. Furthermore, an analysis of a large case study in Germany
was performed, proving that the study is scalable to a city region level.
When performance is further improved, assessments of broader areas
at a national level will be ready to be conducted from a technical
perspective. We achieved IoU’s of 0.8478, 0.7531 and 0.4927 on
the test sets of the rooftop, section and superstructure segmentations
respectively. This is comparable to the state of the art of the field for
the three tasks. Multiple publicly available datasets were evaluated
for our models, showing acceptable performance. The combination
of the rooftop and section segmentations improved the results in the
wild, where the section segmentation model alone would not produce
satisfactory results in regions far from the training data. One of the
benefits of releasing an open source workflow is the chance for the
community to improve it in a combined effort, rather than publishing
redundant works of research. In addition, the proposed conceptual
framework aims to better separate the different tasks in the field, so
that experts from different fields could propose better approaches using
a modular approach.

Our experiments show that the multi-level approach outperforms
the single-shot approach, and combining models with different capabil-
ities enrich the final results. It is important to note that better datasets
are needed not only for training, but also to serve as a benchmark to
evaluate against. On the whole, we believe that the performance of
PASSION has started to become sufficiently accurate for real world,
practical utilization by researchers or users from other fields. However,
this can still be significantly improved, especially for the superstructure
segmentation task. More novel approaches can be used for this, but
ultimately the best way of improving the performance is by improving
the quality of the datasets and gathering new data.

There are many directions for future work in this area, such as im-
proving the performance of the different potential assessments through
better estimation of the tilt, accounting for the shadows, detecting the
division between buildings or incorporating more relevant public data
sources.

14 https://github.com/FZJ-IEK3-VSA/PASSION
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Fig. 15(a) displays the distribution of potentials per section, with sections that were filtered out in red. Fig. 15(b) shows the CPC per rooftop section, after setting a

threshold of 100 €/MWh. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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