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A B S T R A C T   

The mechanisms of cognitive decline and its variability during healthy aging are not fully understood, but have 
been associated with reorganization of white matter tracts and functional brain networks. Here, we built a brain 
network modeling framework to infer the causal link between structural connectivity and functional architecture 
and the consequent cognitive decline in aging. By applying in-silico interhemispheric degradation of structural 
connectivity, we reproduced the process of functional dedifferentiation during aging. Thereby, we found the 
global modulation of brain dynamics by structural connectivity to increase with age, which was steeper in older 
adults with poor cognitive performance. We validated our causal hypothesis via a deep-learning Bayesian 
approach. Our results might be the first mechanistic demonstration of dedifferentiation during aging leading to 
cognitive decline.   

1. Introduction 

Brain aging has been related to changes in cognitive functioning with 
substantial individual variability (Hedden and Gabrieli, 2004). So far, 
several biomarkers have been investigated to unravel underlying 
mechanisms that may account for this complex and highly variable 
relationship. Promising targets include grey matter atrophy as well as 
structural and functional brain reorganization (Reuter-Lorenz and Park, 
2014). Brain structural atrophy, often assessed using measures, such as 
cortical thickness or grey matter volume, have been associated with a 
decline in a variety of cognitive functions, such as executive functions or 
memory (e.g. Reuter-Lorenz et al., 2021). Interestingly, older adults 
have been shown to differentially suffer from cognitive decline, despite 
the same levels of brain atrophy. Therefore, a vast amount of research 
started to focus on the age-related changes in the interaction of specific 
brain regions, i.e. cognitive brain networks. During the aging process, 
both, task-related functional activation patterns as well as 

task-independent functional connectivity (FC) hint at a functional brain 
reorganization, which is accompanied by structural brain reorganiza-
tion, e.g. through a decline in structural connectivity (SC), i.e. the 
integrity of white-matter fibers connecting brain regions (Puxeddu et al., 
2020), and regulatory changes in neuromodulation, such as dopamine 
(Berry et al., 2016). Structural and chemical changes are accompanied 
by functional reorganization in brain networks, i.e. functional connec-
tivity (FC) of the brain regions (Stumme et al., 2020). 

Based on these, contemporary aging theories (Festini et al., 2018; 
Reuter-Lorenz and Park, 2014) aim to link cognitive decline to 
age-related differences or changes in terms of brain structure, as well as 
structural and functional connectivity in older ages. For example, the 
‘Scaffolding Theory of Aging and Cognition’ (STAC) (Reuter-Lorenz and 
Park, 2014) generally hypothesizes that the brain adapts to age-related 
brain atrophy and functional changes by recruiting alternative brain 
regions during task performance, thereby attempting to maintain 
cognitive functioning as stable as possible. Along a similar line of 
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research, several theories have emerged focusing on regional changes in 
brain function (Davis et al., 2008; Zhang et al. (2017) and related 
cognitive functioning during older ages, e.g. higher levels of activity in 
older than younger adults have been proposed to subserve maintenance 
of their performance, i.e. to compensate for age-related reorganization, 
e.g. structural deterioration. However, it has been suggested that at a 
certain point older adults’ brains reach a point where a flexible increase 
in activation levels and therefore compensation is no longer possible and 
cognitive performance cannot be maintained stable (CRUNCH, Reu-
ter-Lorenz and Cappell, 2008). Along this line of research, more bilateral 
patterns of functional brain activation have been observed in older 
adults during task performance (hemispheric asymmetry reduction in 
older adults, HAROLD; Cabeza, 2002; Cabeza et al., 2002), which might 
be interpreted as a compensatory mechanism to maintain cognitive 
function as stable as possible despite structural brain decline. Here, 
another explanation might be a process of functional dedifferentiation of 
brain regions, i.e. a loss of specificity of brain activation pattern, due to a 
decline in network efficiency. 

The change in brain activation could be further extended to func-
tional connectivity by e.g. Davis et al. (2012), who showed that for a 
bilateral task higher performing older adults recruit more bilateral re-
gions of the prefrontal cortex than younger adults, resulting in higher FC 
that is supported by a higher callosal SC as compared to low performers. 
Furthermore, corpus callosum degeneration has been recently shown to 

impact SEP
L the homotopic functional connectivity (Mollink et al., 

2019; Roland et al., 2017) and the age prominence of interhemispheric 
structural degeneration (Puxeddu et al., 2020). Daselaar et al. (2015), on 
the other hand, links SC with higher activity during successful tasks in a 
“less wiring, more firing” hypothesis. Thus, SC and FC have been shown 
to be non-trivially linked during the aging process, and together impact 
cognitive performance. 

However, despite the advent of imaging techniques and novel anal-
ysis methods, the assessment of SC and FC and their influence on 
cognitive function in the aging brain are correlative in nature, since we 
cannot manipulate one or the other. Hence, characterization of age- 
related differences in brain structure, function and cognition mainly 
relied on correlation analysis (Damoiseaux, 2017; Zimmermann et al., 
2016), and in the cases when possible mechanisms were modeled 
(Petkoski et al., 2023), it relied on smaller cohorts. However, with recent 
studies suggesting corpus callosum degeneration to impact the homo-
topic functional connectivity (Mollink et al., 2019; Roland et al., 2017) 
and the age prominence of interhemispheric structural degeneration 
(Puxeddu et al., 2020; Petkoski et al., 2023), the causal influence of 
interhemispheric SC on functional dedifferentiation might be one 
mechanism contributing to the understanding of variability in cognitive 
decline. To disentangle these intertwined mechanisms and approach 
causality, we adapt a mechanistic causal inference framework, in which 
we balance the individual mechanistic contributions in a Virtual Aging 
Brain (VAB) model against empirical evidence in structural and func-
tional brain imaging data and relate that to cognitive outcome. 

As one mechanism characteristic of the aging brain, we here hy-
pothesize that differences in structural interhemispheric connections 
contribute to variability and extent of FC. Moreover, age-related dif-
ferences in FC have not only been observed in static FC (Stumme et al., 
2020), but also in the reduction of its temporal variability, functional 
connectivity dynamics (FCD), reflecting the brain’s capacity to switch 
among cognitive states (Battaglia et al., 2020; Petkoski et al. 2023). As a 
starting point for causal statements about the association between SC 
and FCD with variability in cognitive performance during the process of 
aging, we here focus on manipulating the coupling between inter-
hemispheric SC and FC and assess its relation to cognitive performance. 
I.e., if we manipulate interhemispheric SC we expect the model to result 
in differences in FC and FCD. Further, we expect that manipulation of 
the global coupling between both will result in different brain working 
modes reflected in the model in line with aging theories, e.g. functional 

dedifferentiation or hemispheric asymmetry reduction, as well as 
cognitive outcomes. Furthermore, we compare the results from this 
simulated mechanistic framework against empirical imaging and 
cognitive data of a large population-based sample of older adults. 

To this end, we developed personalized brain network models 
(BNMs), which integrate the individual SCs from the diffusion-weighted 
imaging (DWI) data of the participants of 1000BRAINS dataset (n = 649, 
age-range = [55–85] years, nfemales = 317) (Caspers et al., 2014) to 
simulate functional data. Fig. 1 provides an overview of the general 
workflow. Each individual BNM is an ensemble of nodes, representing 
the different brain regions, constrained by the corresponding SC, which 
serves as the weighted adjacency matrix for the network. The neural 
activity of each node is obtained using an exact mean field model of the 
local neuronal population (Montbrió et al., 2015), exhibiting bistability 
of states of low and high firing rate (Fig. 1(A)). Brain’s structure con-
straints the brain’s capacity to generate certain dynamics characteristic 
of health and pathology (Fousek et al., 2022) and each BNM captures 
potential neuromodulation effects through a non-specific scaling of SC 
via the global network coupling parameter, G (see Methods). Neural 
activity of each BNM was simulated in The Virtual Brain (TVB) platform 
(Sanz Leon et al., 2013) using the EBRAINS infrastructure on which TVB 
is intergated (Schirner et al., 2022). It generates time series for the mean 
neuronal firing rates from which corresponding BOLD signals were 
computed using the Windkessel model (Friston et al., 2000). To causally 
test the contributions of changes in white matter to functional reorga-
nization, we conducted in-silico experiments in two scenarios. First, we 
extracted individual structural connectivity matrices (SCemp) of the 
1000BRAINS participants to design a BNM for each subject (Fig. 1(B)). 
Second, based on the declining age-trend of the interhemispheric con-
nectivity strengths (Fig. 1(C)), we constrained BNMs via the con-
nectomes of the 50 youngest subjects whose interhemispheric SC were 
homogeneously decreased from 0 % to 100 % (α parameter) by masking 
the antidiagonal edges of the SC matrix (SCα, an approach defined as 
“virtual aging”, Fig. 1(D)). Note that this was the strongest trend 
observed in the empirical data, consistent with other studies (Petkoski 
et al., 2023). On the other hand, the overall decrease of the connectivity 
was statistically insignificant (Fig. S1(A)). 

To benchmark the simulated dynamics with the empirical data, we 
computed a set of summary statistics for the corresponding resting-state 
functional magnetic resonance imaging: (i) the homotopic FC, defined as 
the average of the FC of same regions across hemispheres (Fig. 1(E)); (ii) 
the FCD variance, σ2

full (Fig. 1(E)); (iii) the FCD variance difference, 
obtained as the difference between the interhemispheric FCD variance, 
σ2

inter, and the variance of full FCD, σ2
full (Fig. 1(E)) (see Methods). 

Homotopic FC (Stumme et al., 2020; Zuo et al., 2010) as well as the 
dynamical interplay between hemispheres (Escrichs et al., 2021; Xia 
et al., 2019) have been previously reported to be highly 
age-characteristic. To vary the hypothesized degree of neuro-
modulation, as represented by the global coupling parameter G, we 
swept G in the range [1.5–3.2] and computed the associated FCD and its 
variance σ2

full. Maximal values of FCD variance have been previously 
reported to be a proxy of brain fluidity (Rabuffo et al., 2021; Fousek 
et al., 2022), linked to cognitive flexibility (Naik et al., 2017; Senden 
et al., 2017), thus they would represent a potential target for optimi-
zation of potential compensatory processes of each BNM undergoing 
age-related changes. Hence, for each BNM we obtained a global G as 
representative of the variation of the neuromodulatory drive that sets 
the SC tethering onto FC during aging and during interhemispheric SC 
deterioration. 

2. Methods 

2.1. Sample 

Participants of the current study are based on the 1000BRAINS 
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project (n = 1314, 18–87 years, 582 females) (Caspers et al., 2014), a 
population-based study which was designed to analyze the normal aging 
process, i.e. the variability of brain structure, brain function and its 
relation to behavioral, environmental and genetic factors. 1000BRAINS 
is a subsample of the 10-year follow-up cohort of the Heinz Nixdorf 
Recall Study, an epidemiological population-based study that in-
vestigates risk factors for atherosclerosis, cardiovascular disease, cardiac 
infarction, and cardiac death, as well as the associated Multi-Generation 
Study. For 1000BRAINS, no exclusion criteria other than eligibility for 
MRI measurements (Caspers et al., 2014) were applied as the project 
aims to characterize aging at the general population level. Eligibility for 
MRI measurements included any history of neurosurgery, cardiac 
pacemakers, coronary artery stents, surgical implants or prostheses in 
head or trunk, tattoos or permanent make-up on the head. Participants 
gave written informed consent prior to inclusion in 1000BRAINS and 
MR imaging was only conducted as there were no dental implants found 
which could cause artifacts in the brain images and as participants did 
not experience claustrophobia. The study protocol of 1000BRAINS was 
approved by the Ethics Committee of the University of Essen, Germany. 
In the current work we focused on particularly older adults (above 55 
years, n = 970), from which a total of 871 had functional scans avail-
able. 16 participants had to be excluded due to insufficient data quality. 
Of these 855 subjects, 718 also had diffusion data available, from which 
649 were of good quality (see more details under Imaging). The current 
sample therewith comprises a total of n = 649 participants (age-range =
[515.1–85.4] years, mean age = 67.2 years, nfemales = 317). 

To test how the causal link between white matter degeneration and 
functional changes could explain to interindividual variability of 
cognitive decline, we took advantage of the comprehensive neuropsy-
chological assessment that was conducted within 1000BRAINS and 
included 16 cognitive performance tests into the current study (see 
Supplementary Table 2, for more details also see Caspers et al., 2014). 

2.2. Imaging 

All participants were scanned using a 3T Siemens Tim-TRIO MR 
scanner (32- channel head coil, Erlangen, Germany) located at the 
Forschungszentrum Jülich in Germany. Different imaging sequences, i.e. 
anatomical, diffusion and resting-state, were used in the current study to 
analyze the structural and functional connectivity linkage (for detailed 
description of the 1000BRAINS study protocol also see Caspers et al., 
2014). For the anatomical image, a 3D high-resolution T1-weighted 
magnetization-prepared rapid acquisition gradient-echo (MPRAGE) 
anatomical scan (176 slices, slice thickness 1 mm, repetition time (TR) 
= 2250 ms, echo time (TE) = 3.03 ms, field of view (FoV) = 256 × 256 
mm2, flip angle = 9◦, voxel resolution 1 × 1 × 1 mm3) was acquired to 
perform a surface reconstruction. For structural connectivity, diffusion 
tensor images were acquired using the following parameters: a HARDI 
protocol with a subset (60 directions) EPI with TR = 6.3 s, TE = 81 ms, 7 
b0-images (interleaved), producing 60 images with b = 1000 s/mm2 and 
a voxel resolution of 2.4 × 2.4 × 2.4 mm3; and a second HARDI subset 
(120 directions) EPI with TR = 8 s, TE = 112 ms, 13 b0-images 

Fig. 1. Causal framework to link white matter degeneration with age-related functional changes. (A) Brain network models composed of neural mass models 
connected by the SC to simulate BOLD data. (B) Example of an empirical connectome of 1000BRAINS. (C) Interhemispheric SC decrease in the empirical data (ρ = −

45.3 %, p ≤ 0.001 corrected for sex and education). (D) Interhemispheric mask to artificially decrease SC of the 50 youngest subjects with various degrees of uniform 
changes (parameter α from 0 % to 100 %). (E) The computed summary statistics to benchmark and tune the VAB: the homotopic FC (magenta line in left panel), the 
FCD variance, variance of entries the magenta triangle (right panel), the FCD variance difference, which is the difference of the variance of entries between the blue 
and the magenta triangle (right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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(interleaved), producing 120 images with b = 2700 s/mm2 and a voxel 
resolution of 2.4 × 2.4 × 2.4 mm3. And lastly, for resting-state functional 
connectivity, we used a blood-oxygen level dependent (BOLD) 
gradient-echo planar imaging (EPI) sequence with 36 transversally ori-
ented slices (slice thickness 3.1 mm, TR = 2200 ms, TE = 30 ms, FoV =
200 × 200 mm2, voxel resolution 3.1 × 3.1 × 3.1 mm3), lasting for ~11 
min and producing 300 volumes. Of note, during resting-state image 
acquisition, participants were instructed to keep their eyes closed, be 
relaxed, let their mind wander and not fall asleep, which was assured by 
post-scan debriefing. 

2.2.1. Structural image processing 
Using the CAT12 toolbox implemented in SPM12 (Ashburner, 2009), 

we created tissue probability maps (TPM) for gray matter (GM), white 
matter (WM) as well as corticospinal fluid (CSF) from the participant’s 
T1 data. These brain masks were used to optimally extract the brain 
from the T1 data by superimposing and thresholding them at 0.5 (small 
enclosed holes were filled). The T1 brain was bias field corrected, rigidly 
aligned to MNI152 template space and resampled to 1.25 mm isotropic 
voxel size. We corrected the diffusion MRI data for eddy current and 
motion artifacts including interpolation of slices with signal dropouts 
(Andersson et al., 2016). Subsequently, all diffusion data were visually 
controlled for ghosting, remaining signal dropouts or very noisy data 
and volumes or datasets that were considered as suboptimal were 
excluded from further analysis (n = − 69). For dMRI - T1 alignment, the 
first b0 images from each dMRI data with b1000 and b2700 were 
extracted and rigidly aligned to T1 dataset using mutual information as 
cost function (Wells et al., 1996). Based on the estimated transforms, the 
dMRI data were transferred to the individual T1 space, separately for 
both b-values. Implicitly, the realignment resamples the data to 1.25 
mm and rotates the b-vectors according to the corresponding trans-
formations. As there are no field maps or b0 volumes with opposite EPI 
readout directions available in the current study, we computed Aniso-
tropic Power Maps (APM) from the b2700 dMRI data in 1.25 mm space 
to account for susceptibility artifacts and optimize image registration 
(Dell’Acqua et al., 2014). APM contrasts are very similar to those of the 
T1 image and therefore provide an optimized base for image registra-
tion. Hence, APMs were used to compute the non-linear transformation 
from diffusion to anatomical space, thereby taking EPI induced distor-
tions into account. These non-linear transformations were then used to 
transform the TPMs to diffusion space. Finally, the two datasets with 
b1000 and b2700 were merged into one single file and corrected for 
different echo times. This correction was computed by a voxelwise 
multiplication of the b2700 data with the ratio of the 
non-diffusion-weighted data respectively for the two datasets. Lastly, 
local modeling and probabilistic streamline tractography were per-
formed using the MRtrix software package version 0.3.15 (Tournier 
et al., 2012). We computed the constrained spherical deconvolution 
(CSD) local model using multi-tissue CSD of multi-shell data (Jeurissen 
et al., 2014) with all shells and a maximal spherical harmonic order of 8. 
Ten million streamlines were computed with dynamic seeding in the 
gray-white matter interface for every subject using the probabilistic 
iFOD2 algorithm with a maximal length of 250 mm and a cut-off value at 
0.06. 

2.2.2. Functional image processing 
For each participant, the first four echo-planar imaging (EPI) vol-

umes were discarded. To correct for head movement, a two-pass pro-
cedure was performed using affine registration: first, aligning all 
functional volumes to the participant’s first image and second, to the 
mean image. Functional images were then spatially normalized to the 
MNI152 template using the “unified segmentation” approach by (Ash-
burner and Friston, 2005). This was preferred to normalization based on 
T1 weighted images as previous studies indicated increased registration 
accuracies (Calhoun et al., 2017; Dohmatob et al., 2018). Furthermore, 
to identify and remove motion-related independent components from 

functional MRI data, we applied the data-driven method ICA-based 
Automatic Removal of Motion Artifacts [ICA-AROMA (Pruim et al., 
2015)]. According to previous suggestions indicating a combination of 
AROMA and global signal regression to minimize the relation between 
motion and resting-state Functional Connectivity (FC) (Parkes et al., 
2018), we additionally performed global signal regression in the current 
study. Lastly, all rs-fMRI images were bandpass filtered (0.01–0.1 Hz). 
To assure data quality, we performed the established algorithm by 
(Afyouni and Nichols, 2018) on the preprocessed functional data of each 
participant, which generates p-values for spikes (DVARS) indicating 
volume-wise severe intensity dropouts. Participants with dropouts in 
more than 10 % of the 300 volumes were excluded (n = − 8). Lastly, the 
“check sample homogeneity was performed using standard deviation 
across sample” function analysis provided by the CAT12 toolbox (Gaser 
et al., 2022) to check for potential misalignments. Participants detected 
as outlier were manually checked and excluded as the individual mean 
AROMA functional image did not align to the MNI152 template (n = −

8). 

2.2.3. Parcellation 
We parceled the whole-brain into 100 discrete and non-overlapping 

regions using the predefined 17-network parcellation scheme by 
Schaefer et al. (2018). The components provided by the 17-network 
parcellation can be allocated to the 7-network scheme, the latter being 
associated with seven distinct behavioral systems: visual, sensorimotor, 
limbic, frontoparietal, default-mode, dorsal and ventral-attention 
network (Schaefer et al., 2018). 

2.2.4. Structural connectome 
For structural connectivity (SC), the parcellation template first had 

to be warped to individual diffusion space. This was done by combining 
the non-linear warps of the spatial T1 registration to MNI152 and the 
distortion correction with the APMs. Since streamlines are generated 
seeding from the gray-white matter interface and the predefined par-
cellation scheme only covers cortical gray matter, the template was 
expanded adding voxels towards the gray-white matter boundary so that 
all regions also include the seeding points. To increase the biological 
accuracy of SC, the SIFT-2 method was applied (Smith et al., 2015). 
Here, each streamline is weighted with an estimate of its effective 
cross-sectional area, so that the streamline density matches the white 
matter fiber density computed directly from the diffusion signal. Based 
on the estimated streamlines, we calculated the proportion of stream-
lines between regions (Puxeddu et al., 2020) resulting in a 100 × 100 
adjacency matrix wij. The brain was then represented as a whole-brain 
connectome, in which the parcels are considered as nodes and the 
structural connections as edges wij connecting node i and j. By means of 
CSD, wij was computed as a density of streamlines between two regions 
by also correcting for the changing cross-sectional area. All 649 SC ad-
jacency matrices (Regions × Regions) were normalized by the maximum 
of the entire 1000BD cohort. 

2.2.5. Functional connectome 
For functional connectivity, we computed both, static FC as well as 

FC dynamics (FCD). For each of the 100 regions, mean fMRI time-series 
(BOLD signals) were extracted by averaging the functional activity of all 
voxels belonging to this region. 

For static FC, the connectivity (edges) between regions (nodes) was 
estimated by correlating the mean time-series using the Pearson’s cor-
relation coefficient (static PCC or sPCC) resulting in a 100 × 100 FC 
matrix for each participant (Fig. 3). Noteworthily, to make our findings 
comparable to previous work and since negative connectivity values are 
discussed ambiguously (Stumme et al., 2020), we only considered the 
positive edges in the FC and set negative correlation values to zero. 

FCD is the dynamic or time-variant representation of FC and reflects 
the fluctuation of the covariance matrix over time. FCD was quantified 
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by means of a sliding window Pearson correlation coefficient (dynamic 
PCC or dPCC). Following the procedure in Battaglia et al. (2020), we 
estimated the FC for a 40 s  window with maximum overlap (slide step 
set to 1 sample) to obtain a stream or array of FC matrices that spread 
over time. The length of the window was set to 40 s as a trade-off be-
tween a lower sampling FC variability and a sufficient sensitivity to 
detect temporal FC transients (Lurie et al., 2020). The intrinsic dynamics 
of the stream was measured as the combinatorial similarity among the 
matrices of the stream of FCs (Fig. 2(E)). This match is defined as the 
Pearson correlation between FC at time or slice t1 and FC at time or slice 
t2 according to the formula 

FCD
(
t1,t2

)
= corr(UpperTri(dPCC(i, j, t1)),UpperTri(dPCC(i, j, t2))

FCD
(
t1,t2

)
= corr(UpperTri(FC(t1)),UpperTri(FC(t2))

(1)  

which gives a timeXtime matrix known as the FCD Matrix. To assess 
whether the BOLD time series might have state transitions between high 
and low activity, we evaluated the switching behavior of BOLD as 
described in Rabuffo et al. (2021) by employing a compressed metric to 
assess this transitioning behavior. Therefore, we defined the switching 
index (SI) or FCD variance as the variance of the upper triangular part of 
the FCD matrix (Fig. 3) or its Frobenius Norm: 

σ2
FCD, full =‖ Upper(FCD)full ‖

2 =
∑N

i>K

∑N

j>i

⃒
⃒FCD

(
ti,tj

)⃒
⃒2 (2) 

The diagonal order K of the upper triangular matrix was set equal to 
dPCC window length (converted in samples) to correct for the overlap. 

The empirical data analysis was repeated for windows of sizes [40, 
50, 60, 80, 100, 150,180] seconds (Fig. S2), which all share the reported 
trends. 

2.3. The virtual aging brain pipeline 

For the investigation of the causal link between white matter 
degeneration and functional changes and its association with the het-
erogeneity of cognitive decline, we performed a two-fold analysis. In the 
first part, we addressed the questions whether realistic brain function 
can be modeled via a simulated SC decline. After we verified that the 
presence of a decline in the interhemispheric connectomes in empirical 
SC dataset, we designed virtual brains, brain network models con-
strained by the imaging data of SC, to predict brain function from the 
empirical SC dataset (SCemp) as well as one virtually aged participant 
(SCα) (see Predicting functional connectivity: The Connectome-based 
Brain Network Model) and again, compared the derived (in-silico) 
functional data between each other as well as to the empirical (in-vivo) 
functional data (see Comparing estimated in-silico and in-vivo func-
tional data) to ensure the SC changes of the virtual brains could repro-
duce age-related functional changes. Confident about the model 
performance, we then, in the second part, inspected the model derived 
output variable (G-modulation index) characterizing the tethering be-
tween SC and FC and related it to age, sex and cognitive performance 
(see SC-FC tethering and its association to age, cognitive performance 
and sex). 

Fig. 2. Dedifferentiation occurs at both functional and global modulation levels. The trend for homotopic FC for the empirical (A), and the simulated (B) data in 
relation to age, and the virtually aged (C) data in relation to parameter α (∗ ∗ p ≤ 0.001, ∗ p ≤ 0.01, (A-B) corrected for sex and education, (C) median ρ (inter-
quartile range in parenthesis) over the virtually aged subjects, lines show regression curves of the trajectories for each of the virtually aged subjects). (D-E-F) FCD 
variance difference (σ2

diff ) in the same three datasets ((D-E) corrected for sex and education, (F) Median(IQR)). (G) Heatmap of the simulated FCD variance σ2
full for the 

entire 1000BRAINS dataset along two dimensions: G (it has the same axes as the plot in H) and the age of each SC, with the noise variance fixed at σ2
noise = 0.035. (H) 

Heatmap of FCD variance σ2
full for a virtually aged target subject along two dimensions: G and α. (I-J) The G associated to maximum of FCD variance and its trend with 

age (∗ ∗ p ≤ 0.001, corrected for sex and education) and α (median (IQR)). 

M. Lavanga et al.                                                                                                                                                                                                                               



NeuroImage 283 (2023) 120403

6

2.3.1. Predicting functional connectivity: the connectome-based brain 
network model 

The approach to virtually age a structural connectome provides the 
basis to test whether a specific modification in SC affects brain function 
in a causal sense. Therefore, as a preliminary investigation, we inspected 
the empirical SC datasets with regards to age and specifically tested 
whether the previously reported strong age-related interhemispheric SC 
decline (Puxeddu et al., 2020; Roland et al., 2017) is also applicable to 
the current dataset of older adults (see Fig. 2). 

Furthermore, we performed a virtual aging process on the 50 
youngest participants (mean age, age-range) by homogeneously 
decreasing the interhemispheric connections. In particular, we applied a 

mask on the empirical connectome W0 as follows: 

W = W0 − αMinter ∗ W0 (3)  

where Minter is the antidiagonal mask, α is the normalized intensity of 
decrease and * represents an element-wise product (see Fig. 2). The α 
parameter was spanned in the range [0–1] with sampling interval 0.05 
resulting in 20 virtually aged structural connectomes per subject (SC). 

The α-masking approach was used to assess the direct impact of the 
simulated interhemispheric SC decrease on the simulated functional 
data. To assess the effect of age-related interhemispheric SC degenera-
tion on the brain dynamics in a causal sense, we applied the brain 
network model in two scenarios. We simulated resting-state activity via 

Fig. 3. Global modulation age-increase is more prominent in low cognitive performers. (A) The trend of G split by sex: women (pink) and men (blue) (Fisher’s Z: p =
0.46,ρ corrected for sex and education) (B). The aging G trend split by concept shifting: low performers (blue) and high performers (orange) (Fisher’s-Z: p = 0.046,ρ 
corrected for sex and education). (C-D) The same trend in (B) split by the median age 67 years to trends for the younger subjects and older ones (Fisher’s-Z: p = 0.264 
and p = 0.002, respectively). (E-F) The same trend in (A) split by the median age 67 years for the younger subjects and older ones (Fisher’s-Z: p = 0.43 and p = 0.46, 
respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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virtual brains that couples neural mass (NM) models described in 
(Montbrió et al., 2015) through the weighted edges in the SC matrix of 
all participants (n = 649) (Fig. 2(A)) or via the virtually-aged or 
α-masked matrices of the 50 youngest subjects (Fig. 2(B)). The nodal 
dynamics is a mean-field representation of an ensemble of infinite 
all-to-all connected quadratic-integrate-and-fire (QIF) neurons at the 
thermodynamic limit. Following (Montbrió et al., 2015; Rabuffo et al., 
2021) and assuming that input currents to the mass system were 
distributed according to a Lorentzian distribution, the dynamics of each 
region were given by the following equations: 

r′
i(t) =

Δ
π + 2riVi(t),

V′
i(t) = V2

i (t) + η + Jri(t) − π2 r2
i (t) + Ii(t),

(4)  

where the variable ri(t) is the population firing rate, while Vi(t) is the 
average membrane potential of the mass. The parameter J represents the 
average synaptic weight, while the parameter η and Δ represent the 
average excitability of the mass neurons and the heterogeneous noise 
spread, respectively. These two parameters represent the center and the 
half width of the Lorentzian distribution of the input currents. The 
values of these three parameters were set to J = 14.5, η = − 4.6, Δ =
0.7 in order to obtain a bistable regime, meaning a down-state fixed 
point and an up-state stable focus in the phase space (Rabuffo et al., 
2021). The bistability is a fundamental property to ensure a switching 
behavior in the data, that has been considered representative of realistic 
dynamics of real data (Rabuffo et al., 2021; Fousek et al., 2022). The 
dynamics of a node can arise by the oscillation between these two points 
(the down-state and the up-state) in the phase space thanks to current 
Ii(t). We could then model a brain network model by Ii(t) with: 

Ii(t) = G
∑N

j∕=i

wij rj
(
t − τij

)
+ ξi (5)  

and obtaining the coupled differential equation: 

V′
i(t) = V2

i (t) + η + Jri(t) − π2 r2
i (t) + G

∑N

j∕=i

wij rj (t) + ξi (6)  

where rj (t) is the firing rate coming from other regions weighted by the 
structural connectivity edges wij. The variable ξi represents the noise 
that models stochastic external factors and allows the region i to oscil-
late between the two states. The parameter G is the global parameter 
that modulates the overall impact of SC on the state dynamics of each 
region and the ξi is the noise variable that ensures the oscillations be-
tween the up-state and down-state and is distributed according to a 
Gaussian distribution with a variance set to σ. Note that the model ne-
glects the axonal delays assuming instantaneous synaptic couplings 
between the brain regions. The reason is that the model’s dynamics is 
shaped by the neuronal cascades (Rabuffo et al., 2021) that are much 
slower than the delays, which in the case of diffusive couplings can 
constrain the faster neuronal oscillations (Petkoski and Jirsa, 2019) and 
activation patterns (Petkoski and Jirsa, 2022). 

For each connectome, the brain network model was fitted by opti-
mizing parameters G modulation index and noise variance σ2 to maxi-
mize the SI or σ2

FCD, full of the simulated BOLD data (see Fig. 3). SI is an 
indicator for the metastability or switching behavior of functional brain 
networks and can be used as a measurement for the realistic evaluation 
of brain function (Naik et al., 2017; Rabuffo et al., 2021). In fact, pre-
vious results indicate simulated data which was created by the 
enhancement of a metastable or switching behavior and tuning model 
parameters have been considered to provide more realistic dynamics 
than those minimizing the distance between the empirical FC and the 
simulated one (Senden et al., 2017). The capacity to replicate empirical 
data does not only entail the ability to reproduce a specific property of 
the functional data, but reproduce a wider range of features or summary 

statistics, such as static FC and other FCD properties. Specifically, for 
each dataset we conducted a parameter sweep or grid search for the 
global parameter in the range G = [1.5 − 3.2] with sampling interval 
ΔG = 0.05 and the noise variance in the range σ2 = [0.01 − 0.05] with 
Δ σ2 = 0.01 to determine the optimal couple (G, σ2) for which SI is 
maximal. The direct numerical integration for the nodal equations (2) 
was performed via Heun-stochastic integration implemented in the 
Virtual brain open-source code. For each region, we integrated the 
equations with variable time steps (from 0.005 ms to 0.0005 ms) for 5 
min and we downsampled the variables ri(t),Vi(t) to the sampling fre-
quency fs = 100 Hz. The time step was variable to adapt the integra-
tion process and avoid numerical errors or instabilities and the neural 
mass field was filtered via the Balloon-Windkessel model (Friston et al., 
2000) to emulate fMRI time series with repetition time TR set to 2000 
ms. 

For each model fit (the 649 empirical and 20 × 50 = 1000 virtually 
aged connectomes), we obtained a G modulation index which is repre-
sentative of how much the SC influences the brain dynamics. Before 
investigating if the SC-FC causal link was related to behavioral factors 
such as age, sex and cognitive performance, we compared the in-silico 
brain dynamics to in-vivo data assuring that a variety of dynamic and 
static properties of functional covariates are indeed realistic. 

2.3.2. Comparing estimated in-silico and in-vivo functional data 
To ensure that the maximization of the SI indeed provides realistic 

functional dynamics, we estimated and compared a set of dynamic and 
static FC properties in the empirical data, in the age-simulated data and 
in the alpha-simulated data (or virtually aged data). In particular, we 
focused on functional biomarkers that have previously been shown to be 
biologically related to white-matter degeneration at microstructure 
level and to the cross-hemispheric SC topology (Mollink et al., 2019; 
Roland et al., 2017). 

Specifically, we computed the average homotopic FC strength, the 
FCD variance difference, the standard deviation of the interhemispheric 
FC stream. The average homotopic FC strength is defined as the average 
sum of the specular interhemispheric connections, as follows: 

〈HomotopicFC〉 =
1

N/2
∑N/2

i,j=i+N/2

FC(i, j) (7)  

where the averaged FC(i, j) entries represent the element of order K = N
2. 

This definition is derived by the microstructure-function investigation 
by Mollink et al. (2019). We derived both the average of all homotopic 
edges or the average of edges connecting homotopic regions within a 
certain rsFC network. To extend the SI towards an interhemispheric 
topology, we computed the FCD variance difference as the difference 
between the SI of interhemispheric FCD matrix and the SI of the full FCD 
matrix, as follows: 

σ2
diff = σ2

FCD, inter − σ2
FCD, full (8) 

The σ2
FCD, inter was computed by considering only the interhemi-

spheric edges of dPCC in each window and therefore in the similarity 
computation (see Fig. 3). The variance is then obtained as the Frobenius 
norm of the upper triangular part of the interhemispheric FCD matrix: 

σ2
FCD, inter = ‖ Upper(FCD)inter ‖

2
2 =

∑N

i>K

∑N

j>i

⃒
⃒FCDinter

(
ti,tj

)⃒
⃒2 (9) 

Similarly, one can compute the standard deviation of the inter-
hemispheric FC stream as the variability of the interhemispheric FC 
edges of the FC matrix stream obtained with the windowing scheme. By 
unraveling the FC matrix in each slice, we obtained a vector ‘FC edges’ 
for each time point or edges × time matrix. We derived the standard 
deviation of all interhemispheric edges’ time-courses as a representative 
index of the connectivity oscillations across hemispheres or the stability 
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of the metaconnectivity (Faskowitz et al., 2020). 

2.3.3. Simulation-based inference 
The global modulation parameter G of the brain network model was 

also estimated by simulated-based inference (SBI) framework tailored to 
Bayes rule in order to retrieve the model parameter space compatible 
with the empirical data (Cranmer et al., 2020; Gonçalves et al., 2020; 
Hashemi et al., 2023). Statistical inference consists of the automatic 
identification of possible parameters θ via the likelihood function p(X|θ), 
which quantifies the probability that a given set θ generates the vector of 
raw data or low-dimensional data features X. The Bayesian estimation 
consists in p(θ|X) = p(X|θ) p(θ), where p(θ|X) is the posterior that 
quantifies the probabilistic consistency between the selected parameter 
space and fitted empirical data (Hashemi et al., 2020; Hashemi et al., 
2021). In order to evaluate the likelihood function for a 
high-dimensional mechanistic model such as the brain network model in 
this study, we used the sequential neural posterior estimation (SNPE) to 
approximate the distribution p(X|θ) with a flexible neural density esti-
mation trained on low-dimensional data features (Gonçalves et al., 
2020; Hashemi et al., 2023). SNPE is based on the training of a deep 
neural network, which allows to directly approximate all posteriors from 
ad-hoc data features, where the calculation of likelihood function is 
analytically or computationally intractable. Based on a “budget” of 
simulations obtained by a mechanistic model and a specific set of 
(low-dimensional) summary statistics derived from the generated data, 
the weights of the network are optimized through loss minimization 
using masked autoregressive flow (MAF; Papamakarios et al., 2017), 
bypassing the need for the highly computational intensive Markov chain 
Monte Carlo sampling (Gonçalves et al., 2020). Therefore, this approach 
is considered as a simulation-based inference approach that is amor-
tized: after an upfront computational cost during the simulation and 
training steps, a new data set of the subject can be fitted efficiently by a 
single forward pass of the empirical data through the neural network, 
without the need for additional simulations during the inference step, 
thus reducing computational overhead (Gonçalves et al., 2020; Hashemi 
et al., 2023). In this study, a “budget” of 2000 simulations was obtained 
by the model in Eq. (2) and the network was trained on a matrix X, 
which contained the following three features or summary data for each 
simulation: average homotopic FC strength, the difference between the 
whole-brain FCD and the interhemispheric FCD, the standard deviation 
of the interhemispheric FC stream. The simulations were performed with 
a G that was distributed according to a uniform prior (truncated between 
1.5 and 3.2), such that the final posterior estimation resulted in: 
p(GSBI

⃒
⃒Xempirical) = p(Xsimulated|GSBI). As highlighted by the formula, the 

SNPE was repeated on each subject, trained on the simulated data and 
the final estimation of G was obtained by maximizing the log likelihood 
of the features of the empirical BOLD data under the model. The SNPE 
provides the probabilistic statistical relation between G and the empir-
ical data, and the final estimate of GSBI was considered as the maximum 
value of the estimated posterior distribution. For each individual SBI, 
the noise variance was set to the optimized value obtained via the 
parameter sweep. The quality of SNPE was evaluated as the Pearson 
correlation between GSBI and GSweep as well as the trend of GSBI with age. 
We also checked the uncertainty of the estimations encoded in posterior 
distribution for each subject. The SNPE estimation was also validated 
using the in-silico data generated by TVB for one subject, as the esti-
mated posterior distributions accurately encompass the ground truth 
values used in the simulation (see Fig. S3 in the supplements). 

2.4. Quantification and statistical analysis 

To test whether we could actually reproduce the dynamical and 
statical properties of FC, we estimated linear trends of the homotopic FC 
and FCD variance difference features in the functional empirical data, 
the age-simulated data and the alpha-simulated data. Specifically, we 

performed Pearson correlations between the functional summary sta-
tistics and age or the alpha masking variable, respectively. 

The model-derived tethering between SC and FC (G modulation 
index) was then statistically related to both demographic and behavioral 
factors. First, we performed an ANCOVA indicating whether the G index 
is overall age- or sex-related (corrected for education). Furthermore, to 
analyze age-related trajectories of the SC-FC linkage, we performed 
partial correlations between the G modulation index and age (corrected 
for sex and education). This was repeated after stratifying the group by 
sex, and the partial correlations (corrected for education) were statisti-
cally compared (Fishers-Z) indicating whether age-related G modulation 
index changes are different in males as compared to females. Lastly, we 
performed a Pearson’s correlation to test the relation between the G 
modulation index of the virtually aged dataset and the alpha-variable. 

According to various aging theories (Festini et al., 2018; 
Reuter-Lorenz and Park, 2014), changes in the SC-FC tethering might 
explain the variability of cognitive performance during the aging pro-
cess. To test this hypothesis, we performed ordinary-least squares (OLS) 
multivariate regressions for each of the 16 cognitive scores, testing the 
relation between the cognitive performance and the G-coupling index, 
while correcting for age, sex and education. We specified the model as: 

Cognitive Score = β0 + βG G + βage age + βsexsex + βeduedu + ∈ (10) 

Here, results were considered significant at p ≤ 0.05, Bonferroni 
corrected for the number of performed models (n = 16 cognitive scores, 
pcorr = pβ/16). 

Moreover, for cognitive performance scores showing a significant 
relation to the G modulation index, we were interested whether the 
strength of performance determines a different age-related trajectory in 
the G index. Specifically, we split the whole group by the performance 
median into a low performing (LP) and a high performing group (HP) 
and tested whether the G modulation index is significantly different 
between groups (ANCOVA corrected for sex, education and age). We 
also calculated partial correlations between age and the G modulation 
index (corrected for sex and education) and compared these between 
groups (Fishers-Z). Post-hoc, based on a depicted non-linear trend of the 
correlation between age and the G modulation index in particularly the 
low performing subjects, we split the groups by the median age (67 
years) into a younger and older group. Partial correlations between age 
and the G modulation index (corrected for sex and education) were 
repeated group-wise (for low and high performers in young and older 
subjects) and subsequently compared between low and high performing 
groups using Fishers-Z (see Fig. 4). 

3. Results 

3.1. The virtual aging brain model replicates age-related functional 
changes 

The summary statistics of the simulated data of the BNMs con-
strained by the individual SCemp (Fig. 2(B), (E)) display a declining age- 
trend conforming to the empirical data (Fig. 2(A), (D)), which indicates 
a fading interhemispheric communication and dynamical variability. 
Similarly, the summary statistics emerging from the virtually aged BNMs 
(constrained by SCα) display declining trends with increasing α, simi-
larly to the empirical dataset as well as the BNMs constrained by the 
SCemp. 

We also investigated the landscape of brain fluidity (σ2
full) for the 

different G values of the parameter sweep and for different age of the 
SCemp (Fig. 2(G)), as well as for different α values applied to a sample 
target out of the 50 subjects (Fig. 2(H), see the remaining 49 subjects in 
Fig. S2). The red stripes display the peak of FCD variance at which the 
value of G of each BNM was tuned, highlighting that age-related dif-
ferences in SC (empirically as well as virtually) have an increasing 
modulation effect on the respective functional architecture. This 
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becomes clearer in plots I and H, where the values of G for highest 
fluidity are shown for the simulated and virtually-aged subjects 
respectively. At the same time, the chosen values of G are also inversely 
correlated with the mean interhemispheric connectivity (p < 0.001, rho 
= − 0.59), Fig. S1(B), but insignificantly correlated with the mean 
overall connectivity (p = 0.88, rho = 0.006), Fig. S1(C). A significance of 
the latter relationship would have been expected for a system in a linear 
working regime. 

In addition, the independent analysis that we performed shows that 
the correlation between the G parameter and age does not survive when 
we control for the decrease in interhemispheric connectivity (p = 0.48, 
rho = 0.028), supporting the compensatory effect that G plays in regard 
to the white-matter loss. 

3.2. Structural connectivity neuromodulation increase is related to higher 
cognitive decline 

Within this framework, the heterogeneity of cognitive decline can be 
related to the trajectory of the modulation G (Reuter-Lorenz and Park, 
2014) via ordinary least squares (OLS) regression corrected by age, sex 
and education. Neuromodulation G was significantly related with age 
and sex (ANCOVA corrected for education, sex: p ≤ 0.001, age: 
p ≤ 0.001, see Methods), with increasing age associated with higher 
global G (ρ = 27.71 %, p ≤ 0.001, corrected for sex and education, 
Fig. 3(I)). Importantly, the G values obtained from SCα also revealed a 
robust increase of neuromodulation as a function of α, the virtual proxy 
for age in the VAB (ρ = 89.97 % (9.8 %), median (IQR), Fig. 2(J)). It is 
worth noting here that the age × sex interaction is not significant for G 
(t-test p = 0.868). 

Females were found to exhibit significantly lower structure-function 
modulation as compared to males (Fig. S4(A) for all the subjects, and 
Fig. S4(B), (C) respectively for the younger and the older portion sepa-
rately), with a constant difference across age as both sexes showed 
comparable correlations between G and age (Fig. 3(A)). Moreover, G 
was significantly related to the performance in executive function, 

namely concept shifting (OLS: βG = − 19.94, pG = 0.043, see Methods 
and Supplementary Table 1), with a higher G associated with lower 
performance. 

Splitting the subjects by the performance median into low (LP, n =

327) and high (HP, n = 322) performing subgroups revealed that LP are 
not only associated with a significantly higher G as compared to HP 
(ANCOVA: p = 0.019), but also presents a stronger age-related increase 
of G (Fisher’s-Z: p = 0.046, Fig. 3(B)). We additionally split the subjects 
by age into older and younger age groups (cut by median = 67 years), 
which independently significant show differences in the slopes of with 
age (Fig. S5). In older LP subjects, the age-related trajectory of G showed 
a stronger increase as compared to HP subjects (Fisher’s-Z: p = 0.002, 
Fig. 3(D)), while the younger LP did not present a different trajectory 
from the HP group (Fisher’s-Z: p = 0.264, Fig. 3(C)). Notably, G was 
significantly related to verbal memory (βG = − 4.94, pG = 0.044, see 
Methods and Supplementary Table 1). This, however, was not accom-
panied by a stronger correlation between performance and G in LP, 
neither in the older age group nor in the entire cohort. 

3.3. Simulation-based inference confirms the increase of the structural 
connectivity neuromodulation 

Individual values of the neuromodulation parameter, G, were then 
casually validated for each BNM with a Simulation-based Inference (SBI; 
Cranmer et al., 2020) framework. This was done using the sequential 
neural posterior estimation (SNPE) method (Gonçalves et al., 2020; 
Hashemi et al., 2023), and a set of summary statistics of the empirical 
data, including homotopic FC, the FCD σ2

diff , and the standard deviation 
of the interhemispheric FC stream (see Methods). The obtained values of 
G via SBI showed a rising trend with increasing age (Fig. 4(A)), in line 
with the results obtained with the parameter sweep (Fig. 4(C)), which 
indicate an increase in global neuromodulation and, in general, in model 
evidence in association with the age-related decreasing interhemi-
spheric structural connectivity. The variance in the parameter posterior 
distribution is quite high in both cases, indicating a high degree of 

Fig. 4. Bayesian Inference confirms the age-increase of the global modulation. (A) The maximum posterior of global modulation G obtained by SBI with age similarly 
to Fig. 3(I). (B) The standard deviation of the posterior distribution of G obtained by SBI. (C) The correlation between G modulation index obtained with SBI and the 
G obtained by parameter sweep. (D) The posterior distribution of G obtained with SBI for the subjects in the lifespan [55–57] years. (E) The posterior distribution of G 
obtained with SBI for the subjects in the lifespan [80–85] years. 
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degeneracy of the model for the chosen data-features and parameters, 
and this seems to decrease with aging (Fig. 4(B)). A possible explanation 
is that younger subjects have higher resilience because larger ranges of 
the parameters can cause the desired dynamics/function. For better 
illustration, we also obtained the posterior distribution of the modula-
tion G as a further index of the estimation uncertainty and shift of model 
evidence with increasing age (Fig. 4(D) and (F), see Methods). 

It is worth noting that there is a lot of variance in G values obtained 
with SBI for each value from the sweep, Fig. 4(C). However, this is not 
surprising given that SBI is performed for a summary statistics of only 
three metrics, which besides the fluidity of FCD that is used for the 
sweep, also includes both metrics that showed the strongest predictive 
power for the age, that is the homotopic FC and the standard deviation 
of the interhemispheric FC stream. 

4. Discussion 

The present study developed individual brain network models 
(BNMs), which integrate the individual interhemispheric SCs (weighted 
fiber-bundle capacities derived from diffusion-weighted imaging data) 
of older adults to simulate functional BOLD time series. Through scaling 
of SC, i.e. by manipulating the global network coupling parameter G, 
each BNM displays individual variations of modulation of these time 
series, which were benchmarked with the homotopic FC, as well as the 
(interhemispheric) FCD variance. 

Thus, in this particular study we focused on the modulatory effect of 
the interhemispheric SC onto the functional time series, and in partic-
ular their co-variance. We hypothesized that experimentally decreasing 
the interhemispheric SC (ɑ parameter) would mimic one mechanism of 
the structural aging process in the brain (i.e. “virtual aging”) and 
consequently be associated with FCD reductions. 

Neurocognitive theories of aging argue that functional changes 
related to structural deterioration are either beneficial or detrimental 
and mediate cognitive decline (Festini et al., 2018; Reuter-Lorenz and 
Park, 2014). One claim in these theories is that the brain must adopt 
alternative signaling pathways to maintain cognitive function and pre-
serve information exchange (Naik et al., 2017). The VAB framework 
aims to bridge the gap between mechanisms underlying healthy aging: 
in the current study we focus on structural connectivity degradation and 
adaptation of the system state through the structure-function tethering 
that is linked to neuromodulation, and their competing effects on neu-
rofunctional reorganization and subsequent changes on cognition. 
Scaffolding and functional differentiation are normal processes present 
across the lifespan that involve use and development of complementary, 
alternative neural circuits to achieve a particular cognitive goal (Reu-
ter-Lorenz and Park, 2014). This understanding of dedifferentiation is 
related to task-based data but not limited to it. For example, neural 
structures become less functionally differentiated and specialized with 
age during visual tasks (Park et al., 2004), but also during rest when 
weaker functional connectivity within resting state networks and 
stronger functional interaction between these networks have been 
shown cross-sectionally (Stumme et al., 2020) and longitudinally 
(Malagurski et al., 2020). Hence, the behavioral performance in older 
adults is often hypothesized to depend on keeping some quantity 
invariant through compensation in another. Preservation of neuronal 
synchrony in aging through enhancing inter-areal coupling has been 
suggested as one such example (Pathak et al., 2022). Here, the func-
tional feature that is kept invariant is the maximal fluidity, and we 
demonstrate that the increase of global coupling is necessary to achieve 
this, as it was also shown to be necessary to achieve the best fit of the 
aging-related fluidity changes (Petkoski et al., 2023). The compensation 
that we are discussing is perfectly plausible from the dynamical view-
point, but it is still unknown which biophysical mechanism could be 
responsible for the shift in the global coupling. G is a purely phenome-
nological parameter, which has been shown to be important in setting 
the working point in the case of epilepsy (Courtiol et al., 2020). Most 

likely, it is linked to the regulatory changes in neuromodulation that are 
missing in our model, particularly the aging-related increase of dopa-
mine synthesis capacity (Berry et al., 2016). 

As a result of our framework, the simulated functional data of the 
BNMs, constrained by the empirical SC, displayed a declining age-trend 
in FC comparable to the empirical data: i.e. we observed lower homo-
topic FC with older age. When constraining the BNMs by homoge-
neously manipulating SC, i.e. when we decreased the interhemispheric 
SC, we also observed declining trends in FCD variance with increasing ɑ, 
again in line with the empirical data and the empirically constrained 
BNMs. Firstly, this mechanistically supports the hypothesis that inter- 
hemispheric SC serves as a basis for homotopic FC (Mollink et al., 
2019; Roland et al., 2017). Secondly, FCD variance has previously been 
reported to be a proxy of brain fluidity, which has been linked to 
cognitive flexibility (Naik et al., 2017; Rabuffo et al., 2021; Senden et al., 
2017). In our virtual approach, we hypothesize that the brain tries to 
maximize its fluidity (i.e. FCD variance as a proxy for it). Consequently, 
in the model we set the working point of G such that fluidity is 
maximized. 

Taken together, when we observe the lower FCD variance with lower 
(empirical or virtual) inter-hemispheric SC, this might indicate a fading 
interhemispheric communication and dynamical variability. The 
observation that inter-hemispheric SC decline decreases interhemi-
spheric FCD variance in the virtual (VAB) characterization, as well as 
that lower inter-hemispheric SC is associated to lower interhemispheric 
FCD variance in the empirical data, suggests an emergence of functional 
dedifferentiation in older adults (Reuter-Lorenz and Park, 2014; 
Stumme et al., 2020). In line with aging theories, such as HAROLD or 
STAC, lower interhemispheric dynamics indicates higher recruitment of 
brain regions from both hemispheres and a consequently lower func-
tional diversity or specialization (Battaglia et al., 2020; Lou et al., 2019). 
Both, higher bilateral recruitment and lower functional specialization 
might be reminiscent of reduced speed of reconfiguration possibilities of 
cognitive states (Lee et al., 2019; Power et al., 2011; Xia et al., 2019). 
Concurrently, the virtual framework presented a significantly higher 
coupling between SC and FCD, i.e. a higher global network parameter G, 
with higher age, but also with stronger SC deterioration (corrected for 
sex and education). Hence, this demonstrates that the global neuro-
modulation increases with age and with SC deterioration. While both 
sexes showed comparable correlations between G and age (supported by 
a non-significant interaction effect), females were found to exhibit lower 
modulation by SC on FC as compared to males within group compari-
sons. However, the role of sex and its interaction with age itself needs to 
be elucidated further in future studies, as it has been shown to be related 
to differences in structural and functional connectivity and potentially 
different trajectories of their reorganization during aging (Ficek-Tani 
et al., 2023; Ritchie et al., 2018; Sang et al., 2021). 

Furthermore, we additionally related the BNMs to the heterogeneity 
of cognitive decline. Within this framework this was done by linearly 
relating cognitive performance to the modulation of G (Reuter-Lorenz 
and Park, 2014). Here, we observed that a higher global G was nega-
tively related to verbal memory and concept shifting (Supplementary 
Table 1, Figs. 3 and 4). Lower performance in executive function as well 
as verbal memory has been repeatedly found to be particularly charac-
teristic for cognitive decline in older adults (e.g. Reuter-Lorenz et al., 
2021). For all other tests employed within the 1000BRAINS study no 
significant association was found. To further verify our observation of a 
negative relationship between higher G and worse performance in ex-
ecutive functions, we additionally divided our sample in low versus high 
performing subjects. For executive function, we further observed that 
low performing subgroups showed a significantly higher G as well as a 
stronger age-related increase in G as compared to higher performing 
individuals. Given the age-related increase in SC-FC coupling is char-
acterized by functional dedifferentiation, the slightly stronger 
age-related increase in G in low performing individuals might addi-
tionally reflect an acceleration of these processes. Hence, this increased 
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SC-FC tethering might not only be associated with but even contribute to 
lower performance, and suggest an amplification of this loss of 
dynamical flexibility, especially in poor cognitive performers (Fig. 4). 
This may suggest a recalibration strategy due to Scaffolding for the first 
time, since the global modulation increase seems not to happen for the 
high performing group, likely due to better brain maintenance (Reu-
ter-Lorenz and Park, 2014). 

4.1. Limitations 

We here focused particularly on the relation between differences in 
interhemispheric structural connectivity and functional connectivity 
dynamics, reflecting different brain modes of fluidity. The current study 
therefore exemplifies the aging process with one prominent example of 
aging-associated structural decline. In future studies it would be desir-
able to add additional processes as well as further influencing factors 
that might modify the aging process, such as sex, lifestyle choices or 
genetic differences. Further, regarding functional connectivity we chose 
to focus on positive correlations only, as often done in the literature 
since anti-correlations in resting-state data are not well understood yet. 
This could be investigated further in future model engineering studies. 
For future works, continuous analysis of the age trends could provide 
additional information beyond the median split of the group, as we have 
done here with the median age to get the general differences, assuming 
that the changes are monotonic, as indicated by reported trends. 

Another possible limitation of this study is the identical form of the 
hemodynamic response function across brain regions and age that we 
have assumed, besides the fact that its variability confounds the analysis 
of resting-state fMRI (Rangaprakash et al., 2018). Moreover, the vari-
ability in BOLD signals during aging is explained not just by the neuronal 
activity, but also by the cerebrovascular and cardiovascular factors 
(Tsvetanov et al., 2021; West et al., 2019), with neuronal activity itself 
being also coupled to cardiovascular rhythms (Stankovski et al., 2016). 
As a result, BOLD hemodynamic function changes significantly with 
aging with its response becoming smoother (West et al., 2019), and this 
needs to be considered in further studies. 

Our virtual brain framework covers only one part of the mechanisms 
which shape the brain’s dynamics, that is the connectome. In absence of 
subject specific information, we have assumed identical parameters for 
each region, ignoring the known structural hierarchies (Wang et al., 
2020), which have been shown to improve the predictive value of the 
brain network models (Chaudhuri et al., 2015; Schirner et al., 2018; 
Deco et al., 2021; Wang et al., 2023), even when the neuronal mass is 
implicit and data-driven (Sip et al., 2023). In that respect the lack of 
neuromodulation in our model prohibits testing the hypothesis about 
the dopaminergic nature of the global coupling parameter. In addition, 
this could be the reason for the different magnitudes of some of the 
observed values in the model, as compared with the empirical re-
cordings. However, besides some first attempts (Kringelbach et al., 
2020), the effect of neuromodulation in the brain network models is not 
as established as the effect of the connectivity (Breakspear 2017), even 
though averaged whole-brain maps of different receptors are now 
available (Hansen et al., 2022). In that sense our model can be consid-
ered as a first, more generic version, to be further customized to some of 
the distinct features of a given subject’s brain beyond the connectome 
(Amunts et al., 2023). 

5. Conclusion 

The present study shows the first results from virtual aging models 
based on empirical data. Starting with the analysis of structural and 
functional age-related alterations, we identified the interhemispheric 
white-matter loss on the structural side and the interhemispheric fluidity 
and homotopic connectivity on the functional side. Then by manipu-
lating the structure, trying to mimic the empirically observed trajectory 
of white-matter decline, we show that we observe the same trends in- 

silico for the aging trajectories, as well as for the simulated aging 
cohort. This is achieved under the assumption that the brain sets its 
working point at the maximal whole-brain fluidity. This is achieved 
through a gradual increase in the global coupling between the structure 
and the function, which we hypothesize to be of dopaminergic nature, 
and which would need to be verified with more detailed models. 

The Bayesian SBI also confirms this increase of SC neuromodulation 
with aging on an individual basis and retrieves global modulation with 
the same age-declining FC and FCD features. This provides a causal 
validation of the VAB pipeline and suggests higher model evidence for 
higher G values with age and thus a shift of the optimal working point of 
the brain with age. To our knowledge, besides being applied on a task- 
free paradigm, this is a direct evidence of scaffolding and dedifferenti-
ation in aging leading to adverse effects of cognitive decline demon-
strated within a subject-specific causal inference framework in a large 
cohort. 

Resource availability 

Key resources table  
Reagent or resource Source Identifier 
Deposited data   
Structural connectivity 

data of the 1000 
BRAINS dataset 

EBRAINS https://doi.org/10.25493% 
2F6640-3XH 

Software or algorithms   
The virtual aging brain This paper https://github.com/ins-amu/ 

virtual_aging_brain 
The virtual brain The virtual brain 

foundation 
https://github.com/the-vir 
tual-brain/tvb-root https:// 
www.thevirtualbrain.org/tvb/ 
zwei/home 

CAT12 toolbox Structural Brain 
Mapping Group, 
University of Jena 

http://www.neuro.uni-jena. 
de/cat/ 

MRtrix MRtrix https://www.mrtrix.org/ 
FSL (FMRIB Software 

Library) 
Analysis Group, 
FMRIB, Oxford, UK 

https://fsl.fmrib.ox.ac.uk/fs 
l/fslwiki/FSL 

MCFLIRT, FLIRT, BET, 
SUSAN, ICA-AROMA 

FSL (FMRIB Software 
Library)  

DVARS Oxford Big Data 
Institute. 

https://github.com/asoroosh 
/DVARS  

Contact for reagents or resource sharing 

Further information and requests for resources and reagents should 
be directed to and will be fulfilled by the lead contact Viktor Jirsa, 
viktor.jirsa@univ-amu.fr, and by the senior author Svenja Caspers, s. 
caspers@fz-juelich.de. 

Data and code availability 

The code can be found in the following link (https://github.com/ 
ins-amu/virtual_aging_brain). The code for the Virtual Brain is also 
public available at the following link (https://github.com/the-virtual-br 
ain/tvb-root), while learning material to master the platform can be 
found at the TVB hub website (https://hub.thevirtualbrain.org/). The 
Structural Connectivity data are available on EBRAINS platform at the 
following DOI (https://doi.org/10.25493%2F6640-3XH), while the 
fMRI time series and the cognitive scores are available upon reasonable 
request by sending an email to the lead contact or to SC. After the cre-
ation of a personal account and the approval of its request, any EBRAINS 
user could download the data by accepting the EBRAINS data users 
agreement. The EBRAINS subscription works as an MTA between users 
and the data-owner. When a request for access to EBRAINS is done, any 
researcher can also find public implementation of various showcases 
that shows the variety of applications of TVB (https://ebrains.eu/service 
/the-virtual-brain/), such as an online showcase of the VAB that requires 
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no further installation on a personal machine (https://wiki.ebrains.eu/ 
bin/view/Collabs/sga3-d1-2-showcase-1/). 
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