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Abstract  Structural brain imaging parameters 
may successfully predict cognitive performance in 
neurodegenerative diseases but mostly fail to pre-
dict cognitive abilities in healthy older adults. One 
important aspect contributing to this might be sex dif-
ferences. Behaviorally, older males and females have 
been found to differ in terms of cognitive profiles, 
which cannot be captured by examining them as one 
homogenous group. In the current study, we exam-
ined whether the prediction of cognitive performance 
from brain structure, i.e. region-wise grey matter vol-
ume (GMV), would benefit from the investigation 
of sex-specific cognitive profiles in a large sample 
of older adults (1000BRAINS; N = 634; age range 
55–85  years). Prediction performance was assessed 
using a machine learning (ML) approach. Targets 
represented a) a whole-sample cognitive component 

solution extracted from males and females, and b) 
sex-specific cognitive components. Results revealed 
a generally low predictability of cognitive profiles 
from region-wise GMV. In males, low predictability 
was observed across both, the whole sample as well 
as sex-specific cognitive components. In females, 
however, predictability differences across sex-spe-
cific cognitive components were observed, i.e. vis-
ual working memory (WM) and executive functions 
showed higher predictability than fluency and ver-
bal WM. Hence, results accentuated that addressing 
sex-specific cognitive profiles allowed a more fine-
grained investigation of predictability differences, 
which may not be observable in the prediction of the 
whole-sample solution. The current findings not only 
emphasize the need to further investigate the predic-
tive power of each cognitive component, but they also 
emphasize the importance of sex-specific analyses in 
older adults.

Keywords  Aging · Cognitive profiles · Sex 
differences · Machine learning

Introduction

Structural brain imaging parameters have been related 
to cognitive decline during the aging process [1]. 
For example, larger grey matter volume (GMV) of 
the prefrontal cortex has been associated with bet-
ter executive functions, while a preserved memory 
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performance was reported to be associated with 
larger volumes of the medial temporal lobe ([2, 3]; for 
reviews on brain structure – cognitive performance 
relation, see [4] and [5]).

Recently, this relationship has become a promis-
ing target for the early detection of cognitive deficits 
in old age. In light of the growing aging population, 
research has turned to gain a greater understanding of 
the nature of cognitive decline and impairment during 
older ages and with it to pave the way for the future 
amelioration of neurodegenerative diseases. So far, 
machine learning (ML) approaches have been proven 
to successfully predict cognitive performance from 
brain structural imaging data in pathological condi-
tions [6]. For example, Hojjati, Babajani-Feremi [7] 
have shown that performance on two clinical screen-
ing tests, i.e. Clinical Dementia Rating Scale – Sum 
of boxes and Alzheimer’s Disease Assessment Scale 
– 13 item version, could be successfully predicted 
from structural brain features, particularly the volume 
of the entorhinal cortex and hippocampus, in a large 
sample of healthy controls (HCs) as well as patients 
with mild cognitive impairment (MCI) or Alzhei-
mer’s disease (AD) (R2 range: 0.54–0.67). Further, it 
has been demonstrated that structural brain features, 
e.g. grey matter density, alone or in conjunction with 
other variables reliably predict memory performance 
in two large cohorts (i.e. ADNI and DELCOLDE) of 
HCs, MCI, and AD patients [8, 9]. However, focusing 
on samples of HC, either across the lifespan or during 
later decades of life, ML approaches mostly failed to 
reliably predict cognitive abilities with high accura-
cies [10, 11].

In search of confounding factors that may con-
ceal brain-phenotype relationships, sex differences in 
cognitive profiles might be of special interest. Previ-
ous studies have not only shown that sex differences 
in cognitive performance persist until late adulthood 
but also reported sex imbalances in the prevalence of 
neurodegenerative diseases, which are accompanied 
by different cognitive impairments [12–14]. As such, 
males are more likely to suffer from MCI and Parkin-
son’s disease, while females are more often affected 
by Alzheimer’s disease [14, 15]. In a previous study 
[16], we additionally showed that males and females 
not only differ in specific cognitive tasks but more 
generally show specific cognitive profiles across cog-
nitive domains (i.e. attention, executive functions, 
memory, and language functions). Thereby, cognitive 

profiles were derived from 16 different cognitive tests 
as part of an extensive neuropsychological battery in 
the 1000BRAINS study [17] using an exploratory 
principal component analysis (ePCA). Results high-
lighted that cognitive profiles could not be captured 
well by examining them as one homogenous group. 
In this context, males displayed a superordinate cog-
nitive system, i.e. an attentional-executive-fluency-
memory component, suggesting a stronger interplay 
of different cognitive functions. Females, on the other 
hand, exhibited cognitive profiles that consisted of 
more subsystems as compared to males, with each 
system including different cognitive functions (i.e. [1] 
visual (working) memory/ [2] fluency/ [3] executive 
functions/ [4] verbal (working) memory). Although 
these functions share covariances, they represent 
distinct cognitive systems or modules [16]. Thus, 
it appears that males use a rather integrative cogni-
tive processing system, while cognitive processing in 
females tends to be more segregated into subsystems.

This observation might be particularly interest-
ing for the prediction of cognitive profiles in older 
adults. It might not only explain so far only partially 
successful prediction of cognitive functions in mixed 
samples of healthy older males and females but also 
studies addressing sex differences in the predictabil-
ity of cognitive abilities from imaging data using sex-
independent cognitive targets (e.g. theory-driven cog-
nitive components based on mixed results from males 
and females) [18, 19]. Therefore, the current study 
examined whether the predictability of cognitive per-
formance from brain structure differs between general 
cognitive profiles derived from the whole sample and 
sex-specific cognitive profiles.

Methods

Subjects

Subjects included in the current study were drawn 
from 1000BRAINS [17], a population-based epide-
miological cohort study, recruited from the Heinz-
Nixdorf Recall study that has been conducted in the 
Ruhr area in Germany [20]. Since the current study 
builds on our previous study [16] assessing cogni-
tive profiles in older males and females, we used 
this sample as starting point of subject selection: 
676 subjects between 55 and 87 years matched for 
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age and education (338 males with a mean age of 
66.9 years ± 6.7 and a mean ISCED score of 6.3 ± 1.74 
and 338 females with a mean age of 66  years ± 6.5 
and a mean ISCED score of 6.1 ± 1.86); for exclusion 
criteria of this study, see [16]). From this sample, 23 
males and 19 females had to be excluded due to miss-
ing imaging data or methodological problems within 
the imaging processing pipeline. This resulted in 315 
males with a mean age of 67.0 years ± 6.6 and a mean 
ISCED score of 6.3 ± 1.74 and 319 females with a 
mean age of 66.1 years ± 6.5 and a mean ISCED score 
of 6.1 ± 1.86. To verify the matching for age and edu-
cation, we applied independent samples t-tests, which 
revealed no significant age and education differences 
between the two sexes (age: t(623) = 1.732, p = 0.084; 
education: t(623) = 1.454, p = 0.146). All participants 
gave written informed consent before participating in 
1000BRAINS. All experiments were performed in 
accordance with relevant guidelines and regulations. 
The study protocol was approved by the local Ethics 
Committee of the University of Essen.

Sex‑specific cognitive profiles 

All subjects underwent intensive neuropsychologi-
cal testing during their participation in 1000BRAINS 
including 16 different cognitive functions: selective 
attention, processing speed, problem solving, concept 
shifting, susceptibility to interference, figural fluency, 
phonematic and semantic verbal fluency, vocabulary, 
verbal episodic memory, figural memory, visual-, vis-
ual-spatial- and verbal short-term/working memory. 
For an overview of cognitive tasks and variables used 
with mean values as well as sex differences and inter-
correlations in test scores, see [16].

Based on these cognitive abilities, [16] assessed 
the research question of whether males and females 
would show different cognitive profiles, i.e. different 
compositions of cognitive components. To investigate 
this, we extracted cognitive components for both, the 
whole group (n = 676) including males and females, 
as well as for males (n = 338) and females (n = 338) 
separately. To do so, we first used an exploratory 
principal component analysis (ePCA) with Varimax 
rotation (implemented in the “psych” package, RStu-
dio) to reduce the data into cognitive components. 
Afterward, a confirmatory factor analysis (CFA, 
implemented in the “lavaan" package, RStudio) with 
a maximum likelihood estimator with robust standard 

errors and a Satorra-Bentler scaled test statistic was 
applied to validate the different component solutions 
(for a detailed description of this two-step proce-
dure, see [16], for the final component solutions in 
the whole group, males and females separately, see 
Fig.  1A-D). Finally, we extracted regression coeffi-
cients for each cognitive component (implemented in 
the “lavaan” package, RStudio). 

Structural brain imaging

For brain structural analyses, a 3D high-resolution 
T1-weighted magnetization prepared rapid acqui-
sition gradient-echo (MPRAGE) sequence was 
acquired on a 3T Siemens Tim-TRIO MR scan-
ner with a 32-channel head coil (176 slices, slice 
thickness = 1 mm, TR = 2250ms, TE = 3.03ms, 
FoV = 256 × 256 mm2, flip angle = 9°, voxel resolu-
tion = 1 × 1 × 1 mm3). For each subject, T1-weighted 
images were processed using the CAT12v8 SPM12 
toolbox, release v1853 [21]. Thereby, preprocessing 
steps included (i) the initial registration and bias field 
correction, (ii) the derivation of tissue probability 
maps (TPMs) of gray matter, white matter, and cer-
ebrospinal fluid, and (iii) spatial normalization to a 
standard template (derived from N = 555; age range: 
10–80  years; IXI-database; http://​www.​brain-​devel​
opment.​org) with the help of geodesic shooting and 
Gauss–Newton optimisation-based diffeomorphic 
registration [22]. GMV (in ml) for all areas of the 
Julich-Brain atlas [23] as well as the total intracra-
nial volume (ICV) were extracted from the 3D high-
resolution T1-weighted structural brain images (for 
a detailed description of the brain image processing, 
see [24]).

ML framework

A ML approach was chosen to investigate whether sex-
specific cognitive profiles may be better predicted from 
structural imaging features (GMV values for all areas 
of the Julich-Brain atlas) as compared to whole-sample 
cognitive profiles. To do so, we compared ML estima-
tions from predictions of the 1) whole-sample cogni-
tive components in a) all participants, b) males only 
and c) females only, and 2) sex-specific cognitive com-
ponents with a) a male component solution in males 
and b) a female component solution in females only.

http://www.brain-development.org
http://www.brain-development.org
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From a methodological point, we aimed to ascer-
tain that results are not specific to algorithm choice. 
Therefore, we compared three different prediction 
algorithms, i.e. Linear Support Vector Regression 
(linSVR), Elastic Net (EN) Regression, and Random 
Forest (RF) regression, which are commonly used in 
neuroimaging studies [10, 25, 26]. A repeated nested 
10-fold cross-validation (CV) (10 repeats) was used 
to assess ML model performance. To additionally 
avoid data leakage, all hyperparameters were adjusted 
in the inner folds (5-fold CV). The following hyper-
parameters were optimized: regularization param-
eter C for linSVR (10–4 to 101, 10 steps, logarithmic 
scale), the regularization parameters � , and � , for EN 
( � : 10–1 to 102, 10 steps, logarithmic scale; � : 0.1 to 
1, 10 steps), and the number of trees and tree depth 
for RF (number of trees: 100 or 1000; tree depth: 4, 
6, 8, 10, 20, 40, None) [10]. Prediction performance 
was primarily assessed with the coefficient of deter-
mination (R2). Additionally, the mean absolute error 
(MAE) and Pearson’s correlation (r) between true and 
predicted targets were calculated and are reported in 
the Suppl. Tables S1-6. The scikit-learn library (ver-
sion: 0.22.1) in Python was used for all ML analyses 
([27] https://​scikit-​learn.​org/​stable/).

Confounder analyses

Furthermore, to ensure that our predictions were 
not driven by potential confounders, we additionally 
assessed the impact of both, demographic variables 
(age and education; as assessed by the International 
Classification of Education, ISCED [28]) as well as 
ICV on the prediction. To assess the impact of demo-
graphic variables, age, and education were used as 
extra features to our ML models [10, 29]. Perfor-
mance estimations were thus obtained for models 

based on (i) GMV, (ii) demographic variables (DV), 
and (iii) demographic variables and brain structural 
features (GMV + DV). Additionally, prediction per-
formance for all three models (i.e. models [i], [ii], and 
[iii]) was compared between conditions without (no-
deconf. condition) and with confound regression for 
the influence of intracranial volume (ICV) (deconf. 
condition) (based on the set up in [10, 30]).

Feature Importance

To discern relevant features for prediction, mean 
coefficients/importances were calculated for each ML 
model in each sample. Feature importance analyses 
were carried out in models without and with demo-
graphic features (DV) to gain a better understanding 
of the influence of age and education on prediction 
performance. Most important features were identified 
by (1) selecting the 25% of features with the highest 
coefficients/importances for each target in each algo-
rithm (i.e. linSVR, EN, RF) and condition (no deconf. 
vs deconf.), and (2) choosing only those features rep-
resented in all algorithms and conditions. Afterwards, 
important features were plotted on the brain using 
Freeview implemented in FreeSurfer (https://​surfer.​
nmr.​mgh.​harva​rd.​edu/​fswiki/​Freev​iewGu​ide).

ML validation analyses

Two supplementary analyses were performed to vali-
date our ML pipeline. We decided on age and sex pre-
diction as prior literature has shown robust prediction 
results for both from brain structural features [31]. In 
the current study, age was predicted using all three 
algorithms from the main analysis in the no-deconf. 
and deconf. condition. For sex prediction, a classifi-
cation setup was chosen using a linear Support Vector 
Classifier (linSVC), Logistic Regression (Log), and 
Random Forest (RF) Classifier.

ML model comparisons

For contextualization of absolute prediction accura-
cies, ML model estimations were compared to those 
of a reference model, i.e. Dummy Regressor [30, 
32]. The Dummy Regressor follows a simple predic-
tion strategy of predicting the mean of the targets 
in the training set and serves as a baseline to which 
real model performance can be compared [27]. 

Fig. 1   Prediction performance of whole-sample and sex-spe-
cific cognitive profiles from region-wise GMV. A-D Whole 
sample and sex-specific cognitive component solutions and 
their loadings are shown. E–F ML estimations are displayed 
for the global cognitive profile (left) in the whole sample, in 
females and males as well as for sex-specific profiles (right) 
in males and females across different algorithms, i.e. Elas-
tic Net (EN) regression, Random Forest (RF) regression and 
Linear Support Vector Regression (linSVR). The coefficient 
of determination (R2) is displayed with error bars represent-
ing the standard deviation (SD). The grey shaded areas indi-
cate R2 > 0.1 suggesting satisfactory prediction performance. 
Results from no-deconf. condition shown

◂

https://scikit-learn.org/stable/
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide
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Specifically, the percentage of folds (folds > ref.), in 
which the real models outperform the dummy mod-
els, were calculated to provide a better basis for the 
interpretation of results.

Results

Prediction results for whole‑sample cognitive profile

Initially, ML was used to assess the prediction power 
of brain structure, i.e., region-wise GMV within all 
parts of the Juelich Brain atlas [23], for cognitive pro-
files in older adults. Thereby, we made use of previ-
ously extracted cognitive profiles within age and edu-
cation-matched groups of older males and females[16]. 
Importantly, three different component solutions were 
used in the current study derived from 1) a mixed 
group of males and females, i.e. whole-sample (W), 2) 
a group of females (F) only, and 3) a group of males 
(M) only (see Fig. 1A-D; [16]). ML estimations from 
predicting the whole-sample cognitive solution within 
the whole sample revealed satisfactory prediction per-
formance for the first (W1 = [non-]verbal heterogene-
ous functions; mean R2 range = 0.07-0.12; in 82–94% 
of folds R2 > dummy regressor; see Table  1, Fig.  1E 
& Suppl. Tables S1), and decreased prediction perfor-
mance for the second (W2 = [non-]verbal fluency and 
memory functions; mean R2 range = 0.02 to 0.06; in 
68–88% of folds R2 > dummy regressor; see Table 1, 
Fig.  1E & Suppl. Tables  S1) and third component 
(W3 = verbal short and working memory; mean R2 
range = 0.00 to 0.03; in 55–77% of folds R2 > dummy 
regressor; see Table  1, Fig.  1E & Suppl. Tables  S1) 
across algorithms and deconfounding conditions (no-
deconf. and deconf.). Subsequently, the whole sample 
components were used to predict cognitive perfor-
mance either in the male or female subsample, which 
revealed a slight ML performance decrease in females 
(W1: mean R2 range = 0.05-0.11; in 76–87% of folds 
R2 > dummy regressor; W2: mean R2 range = 0.02-
0.05; in 64–79% of folds R2 > dummy regressor; 
W3: mean R2 range = -0.00-0.02; in 63–71% of 
folds R2 > dummy regressor; see Table  1, Fig.  1E & 
Suppl. Tables  S1) and a substantial performance 
decrease in males (W1: mean R2 range = 0.05-0.07; 
in 73–82% of folds R2 > dummy regressor; W2: mean 
R2 range = 0.01-0.04; in 66–80% of folds R2 > dummy 
regressor; W3: mean R2 range = -0.04-0.00; in 

50–62% of folds R2 > dummy regressor; see Table 1, 
Fig. 1E & Suppl. Tables S1) for all cognitive compo-
nents across analytic choices. The general pattern of 
differences between components, however, remained 
in male and female subsamples (see Table 1, Fig. 1E 
& Suppl. Tables S1). Thus, it appeared that prediction 
performance differed not only between the three sam-
ples but also between the different general cognitive 
components.

Prediction results for sex‑specific cognitive profiles

Afterwards, sex-specific cognitive profiles (derived 
from either males or females) were predicted in the 
respective sex groups (see Table 2, Fig. 1F & Suppl. 
Tables  S4). Differences in the predictability of cog-
nitive solutions from GMV emerged for males and 
females. The male cognitive profile (M1: heterogenous 
functions; M2: visual WM & executive functions; M3: 
verbal WM and executive functions) could only be pre-
dicted to a limited degree. Region-wise GMV could 
not explain more than 8% variance across the different 
cognitive components (M1: mean R2 range = 0.04–08; 
in 74–84% of folds R2 > dummy regressor; M2: mean 
R2 range = 0.03-0.05, in 66–76% of folds R2 > dummy 
regressor; M3: mean R2 range = 0.03-0.06; in 72–80% 
of folds R2 > dummy regressor; see Table 2, Fig. 1F & 
Suppl. Tables  S4). Moreover, no substantial predict-
ability differences were observed for the different algo-
rithms and deconfounding strategies.

The female cognitive profile displayed a mixed 
pattern of predictability from region-wise GMV. The 
female cognitive components related to visual short-
term and working memory and executive functions 
(F1: mean R2 range = 0.06-0.12; in 79–89% of folds 
R2 > dummy regressor; F3: mean R2 range = 0.06-
0.11; in 79–91% of folds R2 > dummy regressor; see 
Table  2, Fig.  1F & Suppl. Tables  S4) could be bet-
ter predicted than those related to (non-)verbal flu-
ency and verbal short-term and working memory 
(F2: mean R2 range = 0.01-0.03; in 58–75% of folds 
R2 > dummy regressor; F4: mean R2 range = 0.01-
0.05; in 63–73% of folds R2 > dummy regressor; see 
Table 2, Fig. 1F & Suppl. Tables S4). As such, up to 
11 to 12% of the variance could be explained in com-
ponents F1 and F3, while only between 1 to 5% of the 
variance could be explained in components F2 and F4 
from the input data. Results appeared similar across 
different analytic choices.
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Despite the emergence of predictability differences 
for sex-specific cognitive profiles, it should be empha-
sized that explained variances remained relatively small 
for all components and that described effects were only 
very modest in size (see Fig.  1E & F). Nevertheless, 
addressing sex-specific cognitive profiles allowed a 
more fine-grained investigation of predictability, which 
may have not been possible by simply investigating the 
whole-sample solution.

The impact of age and education on cognitive 
prediction results

In a second step, we examined the predictability of 
cognitive profiles (whole-sample & sex-specific) 
in older adults from demographic variables, i.e. 
age and education, only and in conjunction with 
structural imaging features, i.e., region-wise GMV 
within all parts of the Juelich Brain atlas [23]. 

Table 1   Prediction performance (R2) of whole-sample cogni-
tive profile (W1-3) from brain structural features (GMV), brain 
structural features & demographic variables, i.e. age and edu-

cation (GMV + DV), and demographic variables (DV) in the 
whole sample (W), female (F) and male (M) subsample

Note: Standard deviation (SD) appears in parentheses

GMV GMV + DV DV

Sample Target Condition EN RF linSVR EN RF linSVR EN RF linSVR

Whole sample W1 No-deconf. 0.12
(0.08)

0.12
(0.09)

0.11
(0.09)

0.28
(0.09)

0.22
(0.09)

0.18
(0.10)

0.27
(0.09)

0.24
(0.10)

0.27
(0.10)

Deconf. 0.08
(0.06)

0.09
(0.07)

0.07
(0.07)

0.25
(0.08)

0.20
(0.09)

0.16
(0.08)

0.26
(0.08)

0.24
(0.10)

0.26
(0.09)

W2 No-deconf. 0.05
(0.07)

0.04
(0.07)

0.02
(0.08)

0.24
(0.08)

0.21
(0.09)

0.13
(0.09)

0.24
(0.08)

0.22
(0.11)

0.23
(0.10)

Deconf. 0.06
(0.06)

0.06
(0.05)

0.03
(0.06)

0.24
(0.07)

0.22
(0.08)

0.14
(0.08)

0.24
(0.08)

0.22
(0.10)

0.24
(0.09)

W3 No-deconf. 0.03
(0.05)

0.01
(0.07)

0.02
(0.06)

0.12
(0.07)

0.08
(0.07)

0.04
(0.08)

0.13
(0.08)

0.11
(0.09)

0.12
(0.08)

Deconf. 0.01
(0.04)

0.01
(0.05)

0.00
(0.03)

0.12
(0.06)

0.08
(0.06)

0.03
(0.06)

0.14
(0.07)

0.11
(0.08)

0.11
(0.07)

Male subsam-
ple

W1 No-deconf. 0.07
(0.12)

0.06
(0.13)

0.06
(0.14)

0.22
(0.12)

0.13
(0.14)

0.10
(0.17)

0.24
(0.12)

0.17
(0.15)

0.23
(0.14)

Deconf. 0.06
(0.09)

0.07
(0.09)

0.05
(0.12)

0.22
(0.10)

0.14
(0.12)

0.10
(0.14)

0.25
(0.11)

0.19
(0.13)

0.24
(0.13)

W2 No-deconf. 0.01
(0.11)

0.01
(0.12)

0.01
(0.13)

0.14
(0.11)

0.12
(0.12)

0.04
(0.12)

0.17
(0.13)

0.10
(0.17)

0.16
(0.16)

Deconf. 0.04
(0.07)

0.03
(0.09)

0.04
(0.08)

0.18
(0.09)

0.14
(0.09)

0.05
(0.10)

0.20
(0.11)

0.14
(0.14)

0.19
(0.14)

W3 No-deconf. -0.02
(0.09)

-0.04
(0.11)

-0.04
(0.13)

0.02
(0.10)

-0.02
(0.12)

-0.03
(0.14)

0.06
(0.11)

0.02
(0.12)

0.04
(0.14)

Deconf. 0.00
(0.05)

-0.01
(0.07)

-0.02
(0.05)

0.06
(0.07)

0.01
(0.08)

-0.01
(0.07)

0.09
(0.09)

0.05
(0.11)

0.06
(0.10)

Female sub-
sample

W1 No-deconf. 0.10
(0.11)

0.11
(0.13)

0.10
(0.11)

0.26
(0.12)

0.20
(0.12)

0.12
(0.13)

0.26
(0.12)

0.24
(0.15)

0.24
(0.12)

Deconf. 0.05
(0.07)

0.06
(0.09)

0.05
(0.06)

0.22
(0.09)

0.16
(0.10)

0.08
(0.08)

0.25
(0.10)

0.21
(0.13)

0.24
(0.10)

W2 No-deconf. 0.04
(0.12)

0.05
(0.12)

0.04
(0.12)

0.27
(0.12)

0.23
(0.13)

0.11
(0.14)

0.26
(0.13)

0.23
(0.15)

0.26
(0.15)

Deconf. 0.04
(0.08)

0.04
(0.07)

0.02
(0.05)

0.26
(0.10)

0.20
(0.12)

0.08
(0.09)

0.26
(0.12)

0.22
(0.13)

0.25
(0.14)

W3 No-deconf. 0.00
(0.10)

0.02
(0.13)

-0.00
(0.11)

0.15
(0.10)

0.11
(0.13)

0.02
(0.11)

0.15
(0.11)

0.11
(0.16)

0.15
(0.11)

Deconf. 0.01
(0.05)

0.01
(0.09)

0.00
(0.04)

0.15
(0.07)

0.10
(0.09)

0.01
(0.07)

0.16
(0.08)

0.12
(0.13)

0.15
(0.08)
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Results were, then, compared to those from using 
only brain structural features. This was done to 
get a more detailed understanding of the influence 
of age and education on prediction performance. 
Since previous work showed that demographic 
factors (among others) might be successful in pre-
dicting cognitive performance [25], we assessed 
whether the prediction performance would ben-
efit from including the two in the ML approach. 
Results showed the lowest prediction performance 
for models solely derived from regional brain 
structural features, i.e. GMV (see Fig.  2). In con-
trast, the inclusion of age and education in the ML 
models resulted in a remarkable increase in predic-
tion performance (see Table 1–2, Fig. 2 and Suppl. 
Tables  S1-6). For example, while models based 
on GMV could explain only between 7 and 12% 
of variance in component one (W1) of the global 

component solution, models including extra fea-
tures, i.e. age and education, could explain between 
16 and 28% in variance in W1 across algorithms 
and deconfounding conditions (DV: mean R2 
range = 0.24-0.27; in 99–100% of folds R2 > dummy 
regressor; GMV + DV: mean R2 range = 0.16-0.28; 
in 96–100% of folds R2 > dummy regressor, see 
Table  1, Fig.  2A & Suppl. Tables  S2-3). Thus, 
explained variance increases of up to nearly 20% 
were observed, once age and education were added 
to ML models. Interestingly, these remarkable 
increases in prediction performance were not pre-
sent for all components. Thus, for the global cogni-
tive profile, stronger positive effects of the inclusion 
of age and education on prediction performance 
were found for component one (W1 = [non-]ver-
bal heterogenous functions; mean R2 range = 0.16-
0.28; in 96–100% of folds R2 > dummy regressor) 

Table 2   Prediction 
performance (R2) of 
sex-specific cognitive 
profiles (Males: M1-3; 
Females: F1-4) from 
brain structural features 
(GMV), brain structural 
features & demographic 
variables, i.e. age and 
education (GMV + DV), 
and demographic variables 
(DV) in female (F) and 
male (M) subsample

Note: Standard deviation (SD) appears in parentheses

GMV GMV + DV DV

Sample Tar-
get

Condition EN RF linSVR EN RF lin-
SVR

EN RF linSVR

Male sub-
sample

M1 No-deconf. 0.06
(0.12)

0.05
(0.14)

0.04
(0.13)

0.23
(0.12)

0.19
(0.14)

0.10
(0.14)

0.26
(0.14)

0.20
(0.17)

0.25
(0.16)

Deconf. 0.08
(0.08)

0.07
(0.10)

0.05
(0.09)

0.26
(0.10)

0.21
(0.12)

0.12
(0.11)

0.28
(0.12)

0.23
(0.14)

0.27
(0.14)

M2 No-deconf. 0.05
(0.11)

0.03
(0.13)

0.03
(0.14)

0.17
(0.11)

0.09
(0.13)

0.08
(0.14)

0.19
(0.11)

0.14
(0.15)

0.19
(0.13)

Deconf. 0.05
(0.07)

0.04
(0.09)

0.04
(0.11)

0.18
(0.09)

0.10
(0.11)

0.08
(0.13)

0.21
(0.10)

0.16
(0.13)

0.20
(0.11)

M3 No-deconf. 0.04
(0.12)

0.03
(0.14)

0.03
(0.12)

0.19
(0.11)

0.10
(0.14)

0.09
(0.14)

0.22
(0.12)

0.17
(0.15)

0.21
(0.14)

Deconf. 0.06
(0.07)

0.06
(0.10)

0.04
(0.08)

0.20
(0.09)

0.14
(0.11)

0.10
(0.12)

0.24
(0.11)

0.19
(0.12)

0.23
(0.12)

Female 
subsam-
ple

F1 No-deconf. 0.11
(0.11)

0.12
(0.13)

0.10
(0.11)

0.29
(0.12)

0.22
(0.13)

0.14
(0.13)

0.29
(0.13)

0.26
(0.16)

0.28
(0.13)

Deconf. 0.06
(0.07)

0.07
(0.09)

0.06
(0.07)

0.25
(0.10)

0.18
(0.10)

0.09
(0.09)

0.27
(0.11)

0.24
(0.14)

0.26
(0.11)

F2 No-deconf. 0.03
(0.10)

0.02
(0.12)

0.02
(0.12)

0.21
(0.12)

0.19
(0.13)

0.08
(0.12)

0.21
(0.13)

0.18
(0.15)

0.20
(0.15)

Deconf. 0.03
(0.07)

0.03
(0.08)

0.01
(0.05)

0.21
(0.10)

0.18
(0.12)

0.07
(0.09)

0.21
(0.11)

0.17
(0.13)

0.21
(0.13)

F3 No-deconf. 0.11
(0.11)

0.12
(0.13)

0.11
(0.10)

0.29
(0.11)

0.21
(0.13)

0.14
(0.10)

0.28
(0.12)

0.22
(0.17)

0.26
(0.12)

Deconf. 0.07
(0.07)

0.09
(0.10)

0.06
(0.06)

0.25
(0.09)

0.18
(0.12)

0.09
(0.07)

0.26
(0.10)

0.21
(0.15)

0.25
(0.11)

F4 No-deconf. 0.02
(0.11)

0.05
(0.14)

0.04
(0.11)

0.23
(0.11)

0.21
(0.13)

0.10
(0.13)

0.24
(0.12)

0.22
(0.17)

0.24
(0.13)

Deconf. 0.02
(0.06)

0.03
(0.08)

0.01
(0.05)

0.22
(0.09)

0.19
(0.11)

0.08
(0.08)

0.24
(0.10)

0.20
(0.14)

0.23
(0.10)
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and two (W2 = [non-]verbal fluency and memory 
functions; mean R2 range = 0.13-0.24; in 92–100% 
of folds R2 > dummy regressor) compared to com-
ponent three (W3 = verbal short and working mem-
ory; mean R2 range = 0.03-0.14; in 76–99% of folds 
R2 > dummy regressor) (see Table  1, Fig.  2A & 
Suppl. Tables  S2-3). A similar pattern was found 
for the global components applied to either males or 
females (see Table 1, Fig. 2A & Suppl. Tables S2-
3). Overall, component three (W3) was found to 
be difficult to predict from both brain structure and 
the demographic variables age and education in all 
three different samples across analytic options.

Turning to the sex-specific components (derived 
from either males or females), the inclusion of 
age and education in ML models equally led to 
increases in prediction performance. While low 
prediction performance was observed for the male 
component solution based on brain structural data 
(M1-3: mean R2 range = 0.03-0.08; in 76–84% of 
folds R2 > dummy regressor; see Table  2, Fig.  2B 
& Suppl. Tables  S4), satisfactory prediction per-
formance was encountered once models were 
based on (DV) or included (GMV + DV) age and 
education (M1-3: mean R2 range = 0.08-0.28; 
in 79–100% of folds R2 > dummy regressor; see 
Table  2, Fig.  2B & Suppl. Tables  S5-6). Results 
tended to be quite similar for different components 
for each algorithm across deconfounding strategies 
with a slight advantage of adding age and educa-
tion to component one (M1 = [non-]verbal hetero-
geneous functions) (see Table 2, Fig. 2B & Suppl. 
Tables 5–6). In females, adding age and education 
also increased prediction performance. Neverthe-
less, predictability differences between cogni-
tive components were preserved, when adding the 
confounding variables (F1 & F3: mean R2 = 0.09-
0.29; in 85–100% of folds R2 > dummy regressor; 
F2 & F4: mean R2 = 0.07-0.23; in 79–99% of folds 
R2 > dummy regressor; see Table  2, Fig.  2B & 
Suppl. Tables 5–6). Overall, adding age and educa-
tion substantially boosted prediction power across 
models and samples.

Feature importance

Finally, we explored the feature importance for the 
prediction of cognitive profiles in both the global as 

well as the sex-specific cognitive profiles. Figure  3 
represents the top 25% features that are important 
to predict the global cognitive profile in the whole 
group as well as males and females separately (con-
sisting of the different ML algorithms: EN, RF, 
linSVR). Concerning the whole group component 
solution, widespread networks seem to be related 
to the prediction of cognitive profiles. Focusing on 
the whole group, the first cognitive component W1 
((non-) verbal heterogeneous functions) seems to be 
best predictable from features within the motor sys-
tem (left cytoarchitectonic areas 6d1 and 6mp), the 
inferior parietal lobule (e.g. left areas PF, PFcm and 
right PGa), the superior temporal gyrus (i.e. right 
area STS1) together with the Heschl’s gyrus (e.g. left 
areas TE1.2 and TE2.1) and the extrastriate cortex 
(areas left hOc4d) (see Fig. 3A). Importantly, when 
it comes to the prediction of the global component 
solution in either males or females, the relevant fea-
tures for prediction do not show much overlap in the 
two sexes (see Fig. 3, the overlap is indicated in pur-
ple). Generally, important features in the male group 
show more overlap with the whole group, with the 
most important features being located within the 
temporal (i.e. superior temporal sulcus and gyrus 
and Heschl’s gyrus) and parietal lobule. In contrast 
to that, within females, the most important features 
are located within the visual system, the amygdala, 
and the hippocampus. The second component W2 
((Non-)verbal fluency / memory) reveals a similar 
picture. Males and females show quite distinct rel-
evant features for prediction throughout the brain. 
While all, i.e. the whole group, males and females, 
show most of the relevant features in the inferior and 
superior parietal lobules, males and females refer to 
different proportions of these with only few com-
monalities (see Fig.  3B). Regarding the third com-
ponent W3 (Verbal STM/WM), the primary soma-
tosensory cortex gains in importance, in the whole as 
well as male group (areas 3a, 3b), but not in females. 
In addition, the anterior cingulate cortex appeared 
important in both males and females for the predic-
tion of W3, but again different portions (males: bilat-
eral area 33 and left area p24c, females: bilateral area 
s24) (see Fig. 3C).

The assessment of important features for the pre-
diction of the sex-specific component solutions in 
males and females further supported the observa-
tion from the whole group’s global cognitive profile: 
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different parts of the brain appear to be important for 
the sex-specific cognitive component prediction.

In males, for example, a higher amount of impor-
tant features was found for predicting cognitive pro-
files. All cognitive components relied, e.g. on the 
superior temporal and Heschl gyrus (areas TE1.0, 
TE2.2), and the frontal operculum (area OP8). In 
addition, the highest portion of important features 
was found within the temporal lobe for components 
M1 and M2 (e.g. superior temporal gyrus), while 
component M3 showed the highest number of impor-
tant features within the inferior parietal lobe (see 
Fig. 4A).

For females, on the other hand, a smaller number 
of features, i.e. GMV regions, seem to be important 
for predicting cognitive profiles. For example, the 
extrastriate cortex, i.e. left hOc4d region, appeared 
to be relevant for the prediction of all cognitive com-
ponents. Furthermore, the amygdala seemed to be 
important in the prediction of component F1, while 
features within the motor system and occipital lobe 
were more relevant for component F2. Components 
F3 and F4, in turn, were associated with widespread 
brain regions (see Fig. 4B).

Validation analyses

To validate our ML approach, we performed, fur-
ther, age and sex predictions. Across analytic choices, 
we observed robust prediction results for both age 
(mean R2 range = 0.26-0.39; in 99–100% of folds 
R2 > dummy regressor, see Suppl. Tables S7 & Suppl. 
Figure S8) and sex (mean accuracy range = 76–81%; 
in 100% of folds R2 > dummy regressor, see Suppl. 
Tables S9 & Suppl. Figure S10) from brain structural 
data, in line with previous literature [31, 33].

Discussion

The current study aimed to examine whether the pre-
dictability of cognitive performance from brain struc-
ture differs between general cognitive profiles derived 
from the whole sample including both sexes and sex-
specific cognitive profiles based on brain structural 
features i.e. region-wise GMV, in older adults from 
the 1000BRAINS study using an ML approach. Pre-
sent findings generally showed that prediction per-
formance of a whole-sample cognitive profile, i.e. 
including males and females in one group, from brain 
structure was limited in older adults across analytic 
choices (only one of the three components (W1, het-
erogeneous cognitive functions) reached an R2 > 0.1). 
Applying this component solution to males and 
females separately, further, showed that this global 
cognitive component solution did not exceed the 
results for the whole group. While prediction perfor-
mance within the female subsample was at a similar 
level compared to the whole group, prediction accura-
cies in males were found to be even lower compared 
to the whole sample. Although subsequent investiga-
tions of sex-specific cognitive components overall 
were not able to surpass ML results from the whole-
sample cognitive profile, they uncovered patterns of 
predictability differences that were not discernible in 
the whole-sample solution. Particularly, low predict-
ability was observed for all cognitive components 
(M1-3) from the male solution, while predictability 
differences surfaced between different female cogni-
tive components, i.e. visual short-term and working 
memory and executive functions vs (non-)verbal flu-
ency, which were better predictable, and verbal short-
term memory (F1 & 3 vs F2 & 4).

Differences between males and females in cognitive 
abilities have long attracted the attention of research-
ers. While earlier reports hinted at general cognitive 
performance differences, e.g. superior performance 
of males in visual tasks and of females in verbal tasks 
(e.g. [34, 35]), newer studies have suggested that 
males and females may rather differ in their cognitive 
processing style (global vs local) giving rise to dis-
tinct cognitive profiles [16, 36]. This finding, in turn, 
may be of interest in the prediction of cognitive func-
tioning in older adults providing a potential explana-
tion for the so far only restricted success in predicting 
cognition in healthy older adults [11, 30, 37]. Hence, 
our results emphasized that prediction accuracies for 

Fig. 2   Prediction performance of whole-sample (A) and sex-
specific cognitive profiles (B) from (i) region-wise GMV, (ii) 
regions-wise GMV and demographic variables, i.e. age and 
education (GMV + DV), (iii) demographic variables, i.e. age 
and education (DV). ML estimations are displayed for the 
global cognitive profile (left) in the whole sample, in females 
and males as well as for sex-specific profiles (right) in males 
and females across different algorithms, i.e. Elastic Net (EN) 
regression, Random Forest (RF) regression and Linear Sup-
port Vector Regression (linSVR). The coefficient of determina-
tion (R2) is displayed with error bars representing the standard 
deviation (SD). The grey shaded areas indicate R2 > 0.1 sug-
gesting satisfactory prediction performance. Results from no-
deconf. condition shown

◂
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Fig. 3   Important features from the whole-sample cognitive component solution (W1-3) prediction plotted on a standard brain’s sur-
face reconstruction. Hemis = hemisphere; LH = left hemisphere; RH = right hemisphere; T = whole sample, M = males, F = females
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the whole sample using sex-specific cognitive pro-
files (highest mean R2: 0.12 [female] & 0.08 [male]) 
did not exceed those using a general cognitive profile 
(highest mean R2: 0.12), or in female (highest mean 
R2: 0.11) and male (highest mean R2: 0.07) subsam-
ples. Thus, it appeared that sex differences in the opti-
mal cognitive solution may not account for the low 
overall prediction accuracies previously encountered 
in studies focusing on older adults.

So far, it remains uncertain to what extent behavior 
or cognition can be predicted from brain imaging data 
[38, 39]. Recent research suggests that the prediction 
power of cognitive abilities from different imaging 
modalities in different samples, i.e. young, old, across 
the lifespan, is limited [10, 11, 29, 37, 40]. For exam-
ple, Rasero, Sentis [29] showed that multimodal data 
did not explain more than 8% of the variance in global 
cognitive function in a large sample of younger adults 

Fig. 4   Important features from the male and female cognitive component solutions (M1-3; F1-4) prediction plotted on a standard 
brain’s surface reconstruction. Hemis = hemisphere; LH = left hemisphere; RH = right hemisphere
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(HCP S1200 release). Hilger, Winter [11] found 
that intelligence could only be predicted from GMV 
with high error rates and correlation values between 
true and predicted scores of up to r = 0.30 in a large 
sample across the lifespan. Further, findings from 
a middle-aged to older adult cohort (UK Biobank) 
demonstrated that prediction accuracies of fluid intel-
ligence from sMRI data do not surpass R2 = 0.04 [37]. 
In a similar vein, in a large sample of older adults 
(1000BRAINS) best prediction accuracies of global 
cognition from multimodal data, i.e. region-wise 
GMV, functional connectivity (FC), and structural 
connectivity (SC) estimates, reached a maximum of 
14% of the variance (R2) in absence of confounder 
control [30]. Current findings fall into the same range 
and extend it to the prediction of sex-specific cogni-
tive profiles in a large sample of older adults. In this 
context, region-wise GMV did not explain more than 
12% of the variance across the different cognitive 
targets, i.e. whole-sample and sex-specific cognitive 
profiles. In terms of the correlation between true and 
predicted scores, values were not found to be greater 
than r = 0.38 in the current study. Thus, it appeared 
that brain structure, GMV in particular, only captures 
a limited extent of cognitive performance differences 
in older age and that successful and reliable predic-
tion of cognitive abilities from brain imaging data 
remains a challenging endeavor.

Even though we did not observe a prediction 
power advantage for sex-specific cognitive profiles 
when investigating the whole group, their use as cog-
nitive targets uncovered previously unnoted patterns 
of prediction performance in males and females. 
Generally, higher predictability of cognitive profiles 
(sex-specific and whole-sample) was observed for 
females compared to male older adults. Prediction 
accuracies for all male cognitive components were 
similarly low (mean R2 range: 0.03–0.08). In con-
trast, a more divergent set of effects unraveled for 
females. In this context, visual short-term and work-
ing memory and executive functions (mean R2 range 
for F1 & 3: 0.06–0.12) could be better predicted than 
(non-)verbal fluency and verbal short-term memory 
(mean R2 range for F2 & 4: 0.01–0.05). Similar find-
ings have been previously mainly reported in younger 
samples (but see also [18, 19]). For example, Jiang, 
Calhoun [41] have demonstrated that intelligence can 
be predicted more accurately from FC data in females 
(r = 0.72) compared to males (r = 0.46) across three 

different cohorts of young adults. Along the lines, 
Cui, Su [42] have shown that reading comprehen-
sion (measured by two different tests: picture vocabu-
lary & oral reading recognition) could be predicted 
to a higher extent in females (r = 0.40–0.42) than 
males (r = 0.32–0.36) and comparably in females 
(r = 0.40–0.42) and the whole sample (r = 0.40–0.43) 
from GMV in a sample from the HCP. With the cur-
rent study, we extend these prior findings to the pre-
diction of sex-specific cognitive profiles from region-
wise GMV in older adults (1000BRAINS), which 
to our knowledge has not been investigated before. 
Particularly, present results emphasize predictability 
differences of sex-specific cognitive profiles between 
older males and females as well as predictability dif-
ferences among distinct sex-specific cognitive pro-
files, especially in older females. Thus, highlighting 
that differences in cognitive processing accompa-
nied by differential predictability between males and 
females may also be preserved into higher ages and 
may not solely pertain to younger adults. Further-
more, findings add to initial reports of the feasibility 
and potential of using brain structural data in brain-
behaviour relationship research beyond the more 
common use of functional connectivity data for pre-
diction [43].

One potential explanation for these general dif-
ferences in predictability between the sexes may be 
related to the neural underpinnings corresponding to 
the different processing styles (local vs. global) [16, 
19, 44]. This is supported by the feature importance 
analysis in the current study. Across the cognitive 
components, a greater number of relevant features 
was found for males as compared to females, sug-
gesting that regional involvement is less specific to 
a certain cognitive function and more representative 
of general cognitive processes, i.e. global processing. 
For instance, males showed the primary motor (e.g. 
area 4p), primary sensory (e.g. area 3a and 3b), and 
primary auditory (e.g. area TE1.2 and TE2.2) cortices 
to be relevant for the prediction of cognitive perfor-
mance across cognitive functions. Alterations in these 
primary processing brain regions have been associ-
ated with cognitive decline in older adults [44, 45]. 
Thus, together with regions within, e.g. the inferior 
parietal lobule and the anterior cingulate cortex, these 
regions might be related to general cognitive func-
tioning in older males, which is in line with the more 
global cognitive profile seen in males. As such, lower 
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predictability of cognitive abilities in males may be 
related to a more integrative network of different 
brain regions, which may finally result in weak cor-
respondence between the GMV of a particular region 
and the cognitive target [19, 44].

In contrast, female cognitive components were 
differentially related to brain structural patterns of 
important features, with less involvement of the pri-
mary processing cortices. Strikingly, fewer features 
seem to be important in the prediction of cognitive 
profiles. Here, we, for instance, observed an involve-
ment of the amygdala in the first component F1 (vis-
ual working memory), which has recently been shown 
to be important in the regulation of attentionally 
demanding tasks, i.e. working memory [46]. Region 
Fo7 within the lateral orbitofrontal cortex, which 
is related to covert reading abilities, represents an 
important feature for predicting the fourth cognitive 
component, verbal working memory [47]. The cur-
rent results, hence, emphasized more specialized pro-
cessing of information in females, i.e. local process-
ing, that may allow for an easier mapping between 
brain and cognition. Thus, it can be argued that pre-
dictability differences between males and females 
might be driven by the different processing styles at 
the brain level, which may become particularly evi-
dent when examining sex-specific cognitive profiles. 
As such, advocating for the examination of not only 
general cognitive profiles but also sex-specific cogni-
tive profiles. This might be particularly relevant not 
only in higher ages in the search for a biomarker for 
age-related cognitive decline but also in clinical sam-
ples on the road to precision medicine. Especially, in 
light of differences in the prevalence of pathological 
conditions accompanied by cognitive decline, e.g. 
Alzheimer’s disease and Parkinson’s disease, between 
males and females, it might become essential to con-
sider sex-specific cognitive profiles not only in diag-
nosis and biomarker research but also for individual-
ized treatment opportunities [14, 15, 48, 49].

It needs to be emphasized that some cognitive abil-
ities, e.g. executive and memory functions, are more 
strongly impacted by the aging process and tend to 
decline more strongly than others, e.g. language func-
tions [5, 50]. These differences may also be expressed 
in different extents of predictability. As such, it 
appears advisable to also compare prediction perfor-
mance between the different cognitive components 
for each solution, i.e. whole-sample and sex-specific. 

Across all solutions and analytic options, compo-
nents related to verbal cognitive functions appeared 
to be predicted worse compared to all other com-
ponents, i.e. heterogeneous functions, visual short-
term and working memory, and executive functions. 
While results stand in contrast to findings in younger 
cohorts potentially due to differences in cognitive 
functions further aggravating only during the aging 
process (e.g. [18, 29]), they fit previous accounts in 
studies across the lifespan and older cohorts [10, 51, 
52]. For instance, Feng, Wang [52] revealed that lan-
guage functions could be predicted to a considerably 
smaller degree than attention and executive functions 
from SC data in two large older cohorts, i.e. HCP-A 
and BARBI. Along these lines, prior results from our 
group further substantiate this notion. Across analytic 
options, language functions resulted in the lowest pre-
diction results from multimodal data in a large sample 
of older adults from 1000BRAINS [30]. This pattern 
of results has been replicated in the current study and 
was equally found for male and female subsamples 
and sex-specific cognitive profiles. As such, it appears 
that language functions may not only follow different 
aging trajectories [5, 50] but also differ in their pre-
dictability. A potential explanation for these results 
may relate to the relative stability of language func-
tions in aging potentially resulting in a lower vari-
ability as well as the influence of other factors such 
as education that may explain a substantial amount 
of variance in the target [53, 54]. Hence, current 
results support the notion that not all cognitive func-
tions may be predicted equally well in older age and 
that particular predictability of language functions 
appears restricted.

Demographic variables, e.g. age and education, 
have been found to exert a substantial influence on 
ML performance [55]. Thus, we performed addi-
tional confounder analyses in the current study by 
comparing brain-based models to those including 
demographic factors as extra features (GMV + DV) 
or only features (DV) [29, 30]. Across cognitive tar-
gets and analytic options, the use of age and educa-
tion as input features to ML led to drastic increases 
in prediction performance. As such, increases of up 
to 20% in explained variance in cognitive compo-
nents could be observed. In this context, it should be 
noted that differences in ML performance between 
components and subsamples were largely preserved 
in models with demographic variables. The ML 
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performance boost linked to including demographic 
variables is in line with prior literature [29, 30, 37, 
56, 57]. For instance, Rasero, Sentis [29] showed that 
the inclusion of age, sex, and education in models led 
to performance increases of up to 10% in explained 
variance (R2) in global cognition in younger adults. 
In older adults, similar increases in prediction per-
formance have been reported [30, 57]. In the present 
study, brain structure does not appear to add extra 
information to the prediction of cognitive abilities 
beyond demographic variables, similar to findings 
in [10, 25]. Particularly, current findings suggest that 
even after accounting for potential sex differences, 
the influence of age and education on ML perfor-
mance persists. Thus, it appears that age and educa-
tion may account for a substantial amount of vari-
ance overshadowing brain-behaviour relationships, 
even in already sex-stratified analyses, in the current 
sample of older adults from the 1000BRAINS study.

Limitations

In the current study, we focused on the prediction 
of general and sex-specific cognitive profiles from 
brain structural data. Overall, results suggested lim-
ited prediction power of region-wise GMV for cog-
nition prediction in older age. In future studies, it 
might, therefore, become indispensable to try other 
structural features and input modalities, e.g. dynamic 
functional connectivity or task-based functional 
imaging data [25, 58, 59], multimodal approaches, 
e.g. brain structure and function [29, 30], and other 
non-brain data, e.g. lifestyle information, genetic 
information and health information (i.e. hormonal 
status) [37], to achieve satisfactory ML performance 
in the future [60].

Furthermore, it should be kept in mind that sex in 
the current study was considered to be binary with 
all females and males displaying the respective sex-
specific cognitive profiles. Recent views of a more 
continuum-like or differential expression of male and 
female characteristics representation of sex, thus, fall 
short of being fully appreciated in the present study 
[61]. Thus, it would be interesting to investigate in 
future studies how strongly individuals express the 
respective cognitive profile, whether it corresponds to 
their biological sex, and whether this results in pre-
dictability differences. This would potentially allow 

taking a more individualistic perspective of cogni-
tive profiles that may ultimately boost prediction 
performance.

So far, sex-specific cognitive profiles have to our 
knowledge not been predicted before in older adults. 
Current results, thus, provide new insights into the 
prediction power of the whole sample and sex-specific 
cognitive profiles from brain structure in older adults 
from the 1000BRAINS study. In future studies, it 
would be interesting to investigate if sex-specific cog-
nitive profiles and prediction results replicate in other 
larger cohorts of older adults and patterns of predicta-
bility differences can also be found in younger cohorts 
or whether these only pertain to older cohorts.

Conclusion

The present study investigated the predictability 
of general and sex-specific cognitive profiles from 
brain structural data, i.e. region-wise GMV, in older 
adults from the 1000BRAINS study using ML. The 
investigation of sex-specific cognitive components 
uncovered new patterns of predictability differences 
beyond the whole-sample solution. At the same time, 
results also stressed the challenging nature of cogni-
tion prediction from imaging data in older adults.
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