001     1017826
005     20250401102816.0
024 7 _ |a 10.2760/46796
|2 doi
037 _ _ |a FZJ-2023-04350
041 _ _ |a English
100 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Conference on Big Data from Space 2023
|g BiDS’23
|c Vienna
|d 2023-11-06 - 2023-11-09
|w Austria
245 _ _ |a Challenges and Opportunities in the Adoption of High Performance Computing for Earth Observation in the Exascale Era
260 _ _ |c 2023
|b Publications Office of the European Union
295 1 0 |a Proceedings of the 2023 Conference on Big Data from Space (BiDS’23) - From foresight to impact
300 _ _ |a 25-28
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1702461949_3807
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a High-Performance Computing (HPC) enables precise analysis of large and complex Earth Observation (EO) datasets. However, the adoption of supercomputing in the EO community faces challenges from the increasing heterogeneity of HPC systems, limited expertise, and the need to leverage novel computing technologies. This paper explores the implications of exascale computing advancements and the inherent heterogeneity of HPC architectures. It highlights EU-supported projects optimizing software development and harnessing the capabilities of heterogeneous HPC configurations. Methodologies addressing challenges of modular supercomputing, large-scale Deep Learning (DL) models, and hybrid quantum-classical algorithms are presented, aiming to enhance the utilization of supercomputing in EO for improved research, industrial applications, and SME support.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a EUPEX - EUROPEAN PILOT FOR EXASCALE (101033975)
|0 G:(EU-Grant)101033975
|c 101033975
|f H2020-JTI-EuroHPC-2020-1
|x 2
536 _ _ |a EUROCC - National Competence Centres in the framework of EuroHPC (951732)
|0 G:(EU-Grant)951732
|c 951732
|f H2020-JTI-EuroHPC-2019-2
|x 3
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 4
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 1
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 3
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 4
|u fzj
773 _ _ |a 10.2760/46796
856 4 _ |u https://juser.fz-juelich.de/record/1017826/files/Cavallaro%20et%20al._2023_Challenges%20and%20Opportunities%20in%20the%20Adoption%20of%20High%20Performance%20Computing%20for%20Earth%20Observation%20in%20the%20Exascal%282%29.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1017826
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21