Home > Publications database > Challenges and Opportunities in the Adoption of High Performance Computing for Earth Observation in the Exascale Era > print |
001 | 1017826 | ||
005 | 20250401102816.0 | ||
024 | 7 | _ | |a 10.2760/46796 |2 doi |
037 | _ | _ | |a FZJ-2023-04350 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Conference on Big Data from Space 2023 |g BiDS’23 |c Vienna |d 2023-11-06 - 2023-11-09 |w Austria |
245 | _ | _ | |a Challenges and Opportunities in the Adoption of High Performance Computing for Earth Observation in the Exascale Era |
260 | _ | _ | |c 2023 |b Publications Office of the European Union |
295 | 1 | 0 | |a Proceedings of the 2023 Conference on Big Data from Space (BiDS’23) - From foresight to impact |
300 | _ | _ | |a 25-28 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1702461949_3807 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
520 | _ | _ | |a High-Performance Computing (HPC) enables precise analysis of large and complex Earth Observation (EO) datasets. However, the adoption of supercomputing in the EO community faces challenges from the increasing heterogeneity of HPC systems, limited expertise, and the need to leverage novel computing technologies. This paper explores the implications of exascale computing advancements and the inherent heterogeneity of HPC architectures. It highlights EU-supported projects optimizing software development and harnessing the capabilities of heterogeneous HPC configurations. Methodologies addressing challenges of modular supercomputing, large-scale Deep Learning (DL) models, and hybrid quantum-classical algorithms are presented, aiming to enhance the utilization of supercomputing in EO for improved research, industrial applications, and SME support. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |0 G:(EU-Grant)951733 |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
536 | _ | _ | |a EUPEX - EUROPEAN PILOT FOR EXASCALE (101033975) |0 G:(EU-Grant)101033975 |c 101033975 |f H2020-JTI-EuroHPC-2020-1 |x 2 |
536 | _ | _ | |a EUROCC - National Competence Centres in the framework of EuroHPC (951732) |0 G:(EU-Grant)951732 |c 951732 |f H2020-JTI-EuroHPC-2019-2 |x 3 |
536 | _ | _ | |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731) |0 G:(DE-Juel-1)aidas_20200731 |c aidas_20200731 |x 4 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 1 |u fzj |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 2 |u fzj |
700 | 1 | _ | |a Lintermann, Andreas |0 P:(DE-Juel1)165948 |b 3 |u fzj |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 4 |u fzj |
773 | _ | _ | |a 10.2760/46796 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017826/files/Cavallaro%20et%20al._2023_Challenges%20and%20Opportunities%20in%20the%20Adoption%20of%20High%20Performance%20Computing%20for%20Earth%20Observation%20in%20the%20Exascal%282%29.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1017826 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165948 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)138295 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|