001     1017836
005     20231109201850.0
024 7 _ |a 10.22323/1.433.0024
|2 doi
024 7 _ |a 10.34734/FZJ-2023-04359
|2 datacite_doi
037 _ _ |a FZJ-2023-04359
041 _ _ |a English
100 1 _ |a Shankar, Rahul
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 19th Workshop on Polarized Sources, Targets and Polarimetry
|g PSTP2022
|c Mainz
|d 2022-09-26 - 2022-09-30
|w Germany
245 _ _ |a Optimization of spin-coherence time for electric dipole moment measurements
260 _ _ |c 2023
|b Sissa Medialab Trieste, Italy
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a Proceedings
|b proc
|m proc
|0 PUB:(DE-HGF)26
|s 1699524796_15988
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Conference Proceedings
|0 3
|2 EndNote
336 7 _ |a PROCEEDINGS
|2 BibTeX
490 0 _ |a Proceedings of Science (PoS)
|v PSTP2022
520 _ _ |a The JEDI experiment is dedicated to the search for the electric dipole moment (EDM) of charged particles using storage rings, which can be a very sensitive probe of physics beyond the Standard Model. In order to reach the highest possible sensitivity, a fundamental parameter to be optimized is the Spin Coherence Time (SCT), i.e., the time interval within which the particles of the stored beam maintain a net polarization greater than 1/e. To identify the working conditions that maximize SCT, accurate spin-dynamics simulations with the code BMAD have been performed on the lattice of a "prototype" storage ring which uses a combination of electric and magnetic fields for bending. This contribution will present an analysis of the mechanisms behind the decoherence, some techniques to maximize SCT through the optimization of second-order focusing parameters, and the exclusive beam and spin dynamics effects of the electric component of bending fields.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 613 - Matter and Radiation from the Universe (POF4-613)
|0 G:(DE-HGF)POF4-613
|c POF4-613
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
650 2 7 |a Particle Physics
|0 V:(DE-MLZ)SciArea-230
|2 V:(DE-HGF)
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-Juel1)JEDI-20170712
|5 EXP:(DE-Juel1)JEDI-20170712
|e Jülich Electric Dipole moment Investigations
|x 0
700 1 _ |a Lenisa, Paolo
|0 P:(DE-Juel1)162122
|b 1
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 2
|u fzj
773 _ _ |a 10.22323/1.433.0024
856 4 _ |u https://juser.fz-juelich.de/record/1017836/files/PSTP2022_024.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1017836
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131234
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 0
980 _ _ |a proc
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21