001017848 001__ 1017848
001017848 005__ 20240313103135.0
001017848 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04362
001017848 037__ $$aFZJ-2023-04362
001017848 041__ $$aEnglish
001017848 1001_ $$0P:(DE-Juel1)190767$$aShimoura, Renan$$b0$$eCorresponding author$$ufzj
001017848 1112_ $$a2nd Cologne Neuroscience Day$$cCologne$$d2023-10-26 - 2023-10-26$$wGermany
001017848 245__ $$aInvestigating alpha rhythm generation in a full-density visual thalamocortical model
001017848 260__ $$c2023
001017848 3367_ $$033$$2EndNote$$aConference Paper
001017848 3367_ $$2BibTeX$$aINPROCEEDINGS
001017848 3367_ $$2DRIVER$$aconferenceObject
001017848 3367_ $$2ORCID$$aCONFERENCE_POSTER
001017848 3367_ $$2DataCite$$aOutput Types/Conference Poster
001017848 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704184647_26654$$xOther
001017848 500__ $$aReferences: [1] Silva, L., Amitai, Y., & Connors, B. (1991). Science, 251(4992), 432–435.[2] Roberts, J. A., & Robinson, P. A. (2008). Journal of Theoretical Biology, 253(1), 189–201.[3] Van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M. A., Poort, J., Van Der Togt, C., & Roelfsema, P. R. (2014). Proceedings of the National Academy of Sciences, 111(40), 14332-14341.[4] Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Journal of Neuroscience, 31(13), 4935-4943.
001017848 520__ $$aBackground: The alpha rhythm is a brain oscillation with a frequency around 10 Hz that is predominantly associated with spontaneous ongoing activity and manifests in the occipitoparietal regions of various mammalian species during states of eyes-closed rest. While several hypotheses suggest thalamic and cortical circuits as the primary sources, the exact substrates and mechanisms remain elusive.Objectives: The objective of this study is to present a spiking thalamocortical model to explore potential alpha generator hypotheses. The study investigates two candidate mechanisms for alpha generation: 1) rhythmic bursts around 10 Hz produced by pyramidal neurons in L5 [1]; and 2) a thalamocortical loop delay of approximately 100 ms suggested in previous mean-field models [2].Materials and Methods: The model encompasses the primary visual cortex and the lateral geniculate nucleus. The cortical component represents 1 mm2 of cortical surface. It is partitioned into four layers (L2/3, L4, L5, and L6), each comprising excitatory and inhibitory spiking neurons modeled using the adaptive exponential integrate-and-fire model. The thalamic network, composed of excitatory and inhibitory populations, is simulated with the same neuron model. Thalamocortical connections are established onto cortical neurons in L4 and L6, with reciprocal feedback from L6 neurons to the thalamus. Based on estimated current source density signals from simulated spiking activity, we compared spectra and Granger causality with experimental data. All network simulations were conducted using the NEST simulator. Results and Conclusions: We analyzed the spontaneous activity of the cortical microcircuit and tested the two hypotheses independently within the model. The findings demonstrate that both mechanisms can support alpha oscillations, albeit with distinct laminar patterns. Hypothesis 1 suggests that Granger causality within the alpha range primarily originates from L5 and L2/3, in a pattern resembling top-down propagation from higher cortical areas, as seen experimentally in a previous study [3]. Hypothesis 2 points to L4 and L6 as the main source layers, corresponding to a bottom-up pattern (from thalamus to cortex), similar to the pattern reported in another experimental study [4]. Combining both mechanisms results in a summation of effects, with the alpha oscillation emanating from all layers. The findings suggest that the two mechanisms may contribute differently to alpha rhythms, with distinct laminar patterns, and may be expressed either separately or in tandem under different conditions.
001017848 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001017848 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001017848 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001017848 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x3
001017848 7001_ $$0P:(DE-HGF)0$$aRoque, Antonio Carlos$$b1
001017848 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b2$$ufzj
001017848 8564_ $$uhttps://juser.fz-juelich.de/record/1017848/files/alpha_RenanShimoura_CologneNeuroscienceDay2023.pdf$$yOpenAccess
001017848 909CO $$ooai:juser.fz-juelich.de:1017848$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
001017848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190767$$aForschungszentrum Jülich$$b0$$kFZJ
001017848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b2$$kFZJ
001017848 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001017848 9141_ $$y2023
001017848 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017848 920__ $$lyes
001017848 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001017848 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001017848 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001017848 9801_ $$aFullTexts
001017848 980__ $$aposter
001017848 980__ $$aVDB
001017848 980__ $$aUNRESTRICTED
001017848 980__ $$aI:(DE-Juel1)INM-6-20090406
001017848 980__ $$aI:(DE-Juel1)IAS-6-20130828
001017848 980__ $$aI:(DE-Juel1)INM-10-20170113
001017848 981__ $$aI:(DE-Juel1)IAS-6-20130828