| 001 | 1017849 | ||
| 005 | 20240313094903.0 | ||
| 037 | _ | _ | |a FZJ-2023-04363 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Pronold, Jari |0 P:(DE-Juel1)165321 |b 0 |
| 111 | 2 | _ | |a 2nd Cologne Neuroscience Day |c Cologne |d 2023-10-26 - 2023-10-26 |w Germany |
| 245 | _ | _ | |a Multi-Scale Spiking Network Model of Human Cerebral Cortex |
| 260 | _ | _ | |c 2023 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1704184583_26652 |2 PUB:(DE-HGF) |x Other |
| 500 | _ | _ | |a References: [1] Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Brain Struct Funct. 2018;223(3):1409–35.[2] Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, et al. PLOS Comput Biol. 2018;14(10):e1006359.[3] Potjans TC, Diesmann M. Cerebral Cortex. 2014;24(3):785–806.[4] Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, et al. Neuroimage. 2013;80:62–79[5] Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, et al. Cerebral Cortex. 2015;25(12):4839–53.[6] Minxha J, Adolphs R, Fusi S, Mamelak AN, Rutishauser U. Science. 2020;368(6498). |
| 520 | _ | _ | |a Background: The structure of the brain plays a crucial role in shaping its activity. However, the link between structural connectivity and observed neuronal activity remains incompletely understood. Previous research utilizing a large-scale spiking network model of leaky integrate-and-fire neurons has addressed this question for macaque cortex [1,2]. Here, a similar framework is employed to investigate human cortex in a model that links the cortical network structure to the resting-state activity of neurons, populations, layers, and areas.Objectives: The objective of this study is to investigate the link between structural connectivity and observed neuronal activity in human cortex using a large-scale spiking network model, and to create a platform for multi-scale in silico studies of human cortex.Materials and Methods: The model includes all 34 areas in a single hemisphere of human cortex according to the Desikan-Killiany parcellation. Our approach integrates cortical data on architecture, morphology, and connectivity into a multi-scale framework for predicting neuron connections. Each cortical area is represented by a 1 $mm^2$ layered microcircuit adapted from [3] with the full density of neurons and synapses. Inter-area connectivity relies on diffusion tensor imaging data [4] and the determination of laminar patterns of synaptic connectivity takes into account human neuron morphology data [5]. The model comprises 4 million neurons and 50 billion synapses, simulated with the NEST simulator on the supercomputer JURECA-DC. Results and Conclusions: Simulations of the model with uniform synaptic weights reveal a state with asynchronous and irregular activity that deviates from experimental recordings in terms of spiking activity and inter-area functional connectivity. Increasing inter-area synapse strength enables the model to capture both microscopic and macroscopic resting-state activity of human cortex measured via electrophysiological recordings and fMRI [6]. Furthermore, the model reveals rapid propagation of the effects of a single-spike perturbation across the entire network. This suggests individual spikes play a role in fast sensory processing and behavioral responses in the cortical network. Overall, the model serves as a basis for the investigation of multi-scale structure-dynamics relationships in human cortex. |
| 536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 313856816 - SPP 2041: Computational Connectomics (313856816) |0 G:(GEPRIS)313856816 |c 313856816 |x 1 |
| 536 | _ | _ | |a DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269) |0 G:(GEPRIS)347572269 |c 347572269 |x 2 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
| 536 | _ | _ | |a Brain-Scale Simulations (jinb33_20220812) |0 G:(DE-Juel1)jinb33_20220812 |c jinb33_20220812 |f Brain-Scale Simulations |x 4 |
| 700 | 1 | _ | |a Meegen, Alexander van |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Vollenbröker, Hannah |0 P:(DE-Juel1)180364 |b 2 |
| 700 | 1 | _ | |a Shimoura, Renan |0 P:(DE-Juel1)190767 |b 3 |e Corresponding author |u fzj |
| 700 | 1 | _ | |a Senden, Mario |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Hilgetag, Claus C. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 6 |u fzj |
| 700 | 1 | _ | |a van Albada, Sacha |0 P:(DE-Juel1)138512 |b 7 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:1017849 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)190767 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)145578 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)138512 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|